
Everything curl

Daniel Stenberg and friends



Contents

Introduction 1
Site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Contribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

How to read 3
1. The cURL project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Network and protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. Install curl and libcurl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
4. Source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
5. Build curl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
6. Command line concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
7. Command line transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
8. Command line HTTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
9. Command line FTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
10. libcurl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
11. libcurl transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
12. libcurl HTTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
13. libcurl helpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
14. libcurl examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
15. libcurl bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
16. libcurl internals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
17. Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

The cURL project 5

How it started 6

The name 7
Pronunciation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Confusions and mix-ups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
As a verb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

What does curl do? 8
Command line tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
The library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

ii



CONTENTS iii

Project communication 10

Mailing list etiquette 11
Do not mail a single individual . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Reply or new mail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Reply to the list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Use a sensible subject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Do not top-post . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
HTML is not for mails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Quoting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Please tell us how you solved the problem . . . . . . . . . . . . . . . . . . . . . 13

Mailing lists 14
curl-users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
curl-library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
curl-announce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Reporting bugs 15
A bug is a problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Problems must be known to get fixed . . . . . . . . . . . . . . . . . . . . . . . . 15
Fixing the problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
A good bug report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Commercial support 17

Releases 18
Release cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Daily snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Security 20
Past security problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Trust 21

Code of Conduct 22

Development 23
Source code on GitHub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

The development team 24

Users of curl 25
Open Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Counting downloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Finding users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Command-line tool users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Embedded library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
In website backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Famous users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



iv CONTENTS

Famous high volume apps using curl . . . . . . . . . . . . . . . . . . . . . . . . 27

Future 28

Network and protocols 30

Networking simplified 31
Client and server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Which machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Hostname resolving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Establish a connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Connect to port numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Transfer data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Disconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Protocols 34
What protocols does curl support? . . . . . . . . . . . . . . . . . . . . . . . . . 34
What other protocols are there? . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
How are protocols developed? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
How much do protocols change? . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
About adhering to standards and who is right . . . . . . . . . . . . . . . . . . . 35

curl protocols 37
DICT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
FTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
FTPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
GOPHER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
GOPHERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
HTTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
HTTPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
IMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
IMAPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
LDAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
LDAPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
MQTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
POP3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
POP3S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
RTMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
RTSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
SCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
SFTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
SMB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
SMBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
SMTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
SMTPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
TELNET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
TFTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



CONTENTS v

WSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

HTTP basics 41
The URL converted to a request . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Install curl and libcurl 43

Linux 44
Ubuntu and Debian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Redhat and CentOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Fedora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Immutable Fedora distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
nix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Arch Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
SUSE and openSUSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

SUSE SLE Micro and openSUSE MicroOS . . . . . . . . . . . . . . . . . . 45
Gentoo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Void Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Windows 47

MSYS2 48
Get curl and libcurl on MSYS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Building libcurl on MSYS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vcpkg 50
Install libcurl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

macOS 51
Get libcurl for macOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Container 52
Running curl seamlessly in container . . . . . . . . . . . . . . . . . . . . . . . . 52

Bash or zsh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Fish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Running curl in kubernetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Source code 54
Hosting and download . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Clone the code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Open Source 55
What is Open Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

License 56

Copyright 57
Independent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Legal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Code layout 58
root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



vi CONTENTS

lib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
lib/vtls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
src . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
include/curl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
docs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
docs/libcurl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
docs/libcurl/opts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
docs/examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Handling build options 62

Code style 63
Naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Indentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Long lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Braces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
else on the following line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
No space before parentheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Use boolean conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
No assignments in conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
New block on a new line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Space around operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
No parentheses for return values . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Parentheses for sizeof arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Column alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Platform dependent code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
No typedefed structs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Contributing 69
Suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
What to add . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
What not to add . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Pull request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Make a patch for the mailing list . . . . . . . . . . . . . . . . . . . . . . . . . . 71
git commit style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Who decides what goes in? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Reporting vulnerabilities 73
Vulnerability handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
curl-security@haxx.se . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Website 75
Building the web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Run a local clone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Website infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Build curl and libcurl 77



CONTENTS vii

The latest version? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Releases source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
git vs release tarballs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
On Linux and Unix-like systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
On Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Learn more . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Autotools 79
Cross-compiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Static linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Select TLS backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Select SSH backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Select HTTP/3 backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

CMake 82

Separate install 83
Static linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Dynamic linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Temporary installs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

LD_LIBRARY_PATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
rpath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Windows 85
winbuild . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Visual C++ project files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Running DLL based configurations . . . . . . . . . . . . . . . . . . . . . . . . . 86
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Dependencies 88
HTTP Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
c-ares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
nghttp2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
openldap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
librtmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
libpsl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
libidn2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
SSH libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
TLS libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
QUIC and HTTP/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

TLS libraries 90
configure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

OpenSSL, BoringSSL, libressl . . . . . . . . . . . . . . . . . . . . . . . . . 90
GnuTLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
WolfSSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
mbedTLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Secure Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Schannel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
BearSSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



viii CONTENTS

Rustls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

BoringSSL 93
build boringssl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
set up the build tree to get detected by curl’s configure . . . . . . . . . . . . . . 93
configure curl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
build curl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Command line concepts 94
Garbage in gives garbage out . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Differences 95
Binaries and different platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Command lines, quotes and aliases . . . . . . . . . . . . . . . . . . . . . . . . . 95

Command line options 96
Short options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Long options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Arguments to options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Arguments with spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Negative options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Options depend on version 99

URLs 100

Scheme 101
The scheme separator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Without scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Supported schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Name and password 103

Host 104
International Domain Names (IDN) . . . . . . . . . . . . . . . . . . . . . . . . . 104

Port number 105
TCP vs UDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Path 106

Query 107

FTP type 108

Fragment 109
A fragment trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Browsers 110
Browsers’ address bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Many options and URLs 111



CONTENTS ix

One output for each given URL . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Separate options per URL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Connection reuse 113

Parallel transfers 114
Parallel transfer progress meter . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Connection before multiplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

trurl 115
Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
trurl example command lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
More . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

URL globbing 118
Numerical ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Alphabetical ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Output variables for globbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Using []{} in URLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

List options 121

Config file 122
Specify the config file to use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Command line options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
URLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
When to use quotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Default config file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Variables 125
Setting variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Assigning contents from file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Expand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Environment variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Expand --variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Function: trim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Function: json . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Function: url . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Function: b64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Passwords 129
Command line leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Network leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Progress meter 130
Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



x CONTENTS

Progress meter legend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Version 132
Line 1: curl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Line 1: TLS versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Line 2: Release-Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Line 3: Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Line 4: Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Persistent connections 135

Exit code 136
Available exit codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Error message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
“Not used” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Copy as curl 144
From Firefox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
From Chrome and Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
From Safari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
On Firefox, without using the devtools . . . . . . . . . . . . . . . . . . . . . . . 148
Not perfect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Command line transfers 149

Verbose 150
HTTP/2 and HTTP/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Silence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Trace options 153
Time stamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Identify transfers and connections . . . . . . . . . . . . . . . . . . . . . . . . . . 154
More data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Write out 156
Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
HTTP headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Available –write-out variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Downloads 160

What exactly is downloading? 161

Storing downloads 162
Overwriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Leftovers on errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Download to a file named by the URL 164
Use the URL’s filename part for all URLs . . . . . . . . . . . . . . . . . . . . . 164



CONTENTS xi

Use the target filename from the server 165

HTML and charsets 166

Compression 167
HTTP headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Uploads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Shell redirects 169

Multiple downloads 170
Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

My browser shows something else 171
Client differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Server differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Intermediaries’ fiddlings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Maximum filesize 173

Storing metadata in file system 174

Raw 175

Retry 176
Tweak your retries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Connection refused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Retry on any and all errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Resuming and ranges 178

Uploads 179
Protocols allowing upload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
HTTP offers several uploads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

POST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
multipart formpost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
PUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

FTP uploads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
SMTP uploads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Progress meter for uploads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Transfer controls 181

Stop slow transfers 182

Rate limiting 183

Request rate limiting 184

Connections 185

Name resolve tricks 186



xii CONTENTS

Edit the hosts file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Change the Host: header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Provide a custom IP address for a name . . . . . . . . . . . . . . . . . . . . . . 186
Provide a replacement name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Name resolve tricks with c-ares . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Connection timeout 189

Network interface 190

Local port number 191

Keep alive 192

Timeouts 193
Maximum time allowed to spend . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Never spend more than this to connect . . . . . . . . . . . . . . . . . . . . . . . 193

.netrc 194
The .netrc file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
User name matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Enable netrc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Proxies 196

Discover your proxy 197

PAC 199

Captive portals 200

Proxy type 201

HTTP proxy 202
HTTPS with HTTP proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Non-HTTP protocols over an HTTP proxy . . . . . . . . . . . . . . . . . . . . . 202
HTTP proxy tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

SOCKS proxy 204

MITM proxy 205

Proxy authentication 206

HTTPS proxy 207
HTTP/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Proxy environment variables 208
No proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
http_proxy in lower case only . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Proxy headers 210



CONTENTS xiii

haproxy 211
curl and haproxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

TLS 212

Ciphers 213

Enable TLS 214

TLS versions 216

Verifying server certificates 217
Native CA stores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
CA store in file(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
CA store on windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Certificate pinning 219

OCSP stapling 220

Client certificates 221

TLS auth 222

TLS backends 223
Multiple TLS backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

SSLKEYLOGFILE 224
libcurl-using applications too . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

SCP and SFTP 227
URLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Known hosts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Reading email 229
POP3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
IMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
TLS for emails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Sending email 231
Secure mail transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
The SMTP URL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
No MX lookup! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

DICT 233
Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

IPFS 234
Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234



xiv CONTENTS

MQTT 235
What does curl deliver as a response to a subscribe . . . . . . . . . . . . . . . . 235
Caveats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

TELNET 236
Historic TELNET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Debugging with TELNET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

TFTP 238
Download . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Upload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
TFTP options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

Command line HTTP 239

Method 240

Responses 241
Size of an HTTP response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
HTTP response codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
CONNECT response codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Chunked transfer encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Gzipped transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Transfer encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Pass on transfer encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Authentication 244

Ranges 246

HTTP versions 247

HTTP/0.9 248

HTTP/2 249
Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

HTTP/3 250
QUIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
HTTPS only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Alt-svc: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
When QUIC is denied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Conditionals 252
Check by modification date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Check by modification of content . . . . . . . . . . . . . . . . . . . . . . . . . . 252

HTTPS 254



CONTENTS xv

HTTP POST 255

Simple POST 256

Content-Type 257

Posting binary 258

JSON 259
Crafting JSON to send . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Receiving JSON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

URL encode data 261

Convert to GET 263

Expect 100-continue 264
HTTP/2 and later . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Chunked encoded POSTs 265
Caveats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Hidden form fields 266

Figure out what a browser sends 267

JavaScript and forms 268

Multipart formposts 269
Sending such a form with curl . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
The HTTP this generates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Content-Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Converting a web form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
From <form> to -F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

text input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
file input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
hidden input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
All fields at once . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

-d vs -F 273
HTML web forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
POST outside of HTML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Redirects 274
Permanent and temporary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Tell curl to follow redirects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
GET or POST? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Decide what method to use in redirects . . . . . . . . . . . . . . . . . . . . 275
Redirecting to other host names . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Non-HTTP redirects 277
HTML redirects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277



xvi CONTENTS

JavaScript redirects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Modify the HTTP request 278

Request method 279

Request target 280
–path-as-is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

Fragment 281

Customize headers 282

Referer 283

User-agent 284

HTTP PUT 285

Cookies 286
Cookie engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Reading cookies from file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Writing cookies to file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
New cookie session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Cookie file format 288
File format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Fields in the file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

Alternative Services 289
Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
The alt-svc cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
HTTPS only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
HTTP/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

HSTS 290
HSTS cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Use HSTS to update insecure protocols . . . . . . . . . . . . . . . . . . . . . . . 290

Scripting browser-like tasks 291
Figure out what the browser does . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Cookies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Web logins and sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Redirects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Post-login . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Referer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
TLS fingerprinting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Command line FTP 294
Ping-pong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Transfer mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294



CONTENTS xvii

FTP Directory listing 296

Uploading with FTP 297

Custom FTP commands 298
Quote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
A series of commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
Fallible commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Two connections 300
Active connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Passive connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Firewall issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Directory traversing 302
multicwd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
nocwd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
singlecwd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

FTPS 304
Implicit FTPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
Explicit FTPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
Common FTPS problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

libcurl 305
C API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Transfer oriented . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Simple by default, more on demand . . . . . . . . . . . . . . . . . . . . . . . . . 305

Header files 307

Global initialization 308

API compatibility 309
Version numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Bumping numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Which libcurl version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
Which libcurl version runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

–libcurl 312

multi-threading 314

CURLcode return codes 315

Verbose operations 316
Trace everything . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
Transfer and connection identifiers . . . . . . . . . . . . . . . . . . . . . . . . . 317
Trace more . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Caches 319
DNS cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319



xviii CONTENTS

Connection cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
TLS session cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
CA cert cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

Performance 321
reuse handles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
buffer sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
pool size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
make callbacks as fast as possible . . . . . . . . . . . . . . . . . . . . . . . . . . 321
share data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
curl_multi_socket_action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

for C++ programmers 323
Strings are C strings, not C++ string objects . . . . . . . . . . . . . . . . . . . 323
Callback considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

libcurl transfers 324

Easy handle 325
Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
Duplicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

curl easy options 327
Get options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Set numerical options 328

Set string options 329
CURLOPT_POSTFIELDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

Why? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

TLS options 330
Protocol version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
Protocol details and behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

TLS Client certificates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
TLS auth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

STARTTLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

All options 332

Get option information 340
Iterate over all options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
Find a specific option by name . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
Find a specific option by ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
The curl_easyoption struct . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341



CONTENTS xix

Drive transfers 342

Drive with easy 343

Drive with multi 344
When is a single transfer done? . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

Drive with multi_socket 347
Pick one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Many easy handles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
multi_socket callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

socket_callback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
timer_callback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
How to start everything . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
When is it done? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Callbacks 350

Write data 351
Store in memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

Read data 353

Progress information 354

Header data 355

Debug 356

sockopt 357

SSL context 358

Seek and ioctl 359

Network data conversion 360
Convert to and from network callbacks . . . . . . . . . . . . . . . . . . . . . . . 360
Convert from UTF-8 callback . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

Opensocket and closesocket 361
Provide a file descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
Socket close callback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

SSH key 363

RTSP interleaved data 364

FTP wildcard matching 365
Wildcard patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
FTP chunk callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
FTP matching callback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

Resolver start 367



xx CONTENTS

Sending trailers 368

HSTS 369

Prereq 370

Connection control 371

How libcurl connects 372
Happy Eyeballs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
Timeout and halving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
HTTP/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

Connection reuse 374
Easy API pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
Multi API pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
Sharing the connection cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

Name resolving 375
Name resolver backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

DNS over HTTPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Custom addresses for hosts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Name server options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
No global DNS cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

Proxies 378
Proxy types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
Local or proxy name lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
Which proxy? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Proxy environment variables . . . . . . . . . . . . . . . . . . . . . . . . . . 379
HTTP proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
HTTPS proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
Proxy authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
HTTP Proxy headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

Transfer control 381

Stop 382
easy API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
multi API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

Stop slow transfers 384

Rate limit 385

Progress meter 386

Progress callback 387

Cleanup 388
Multi API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388



CONTENTS xxi

easy handle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

Post transfer info 389
Available information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

libcurl HTTP 393
HTTPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
HTTP proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

Responses 394
Response body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
Response meta-data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
HTTP response code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
About HTTP response code “errors” . . . . . . . . . . . . . . . . . . . . . . . . 395

Requests 396
Request method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
Customize HTTP request headers . . . . . . . . . . . . . . . . . . . . . . . . . . 396

Add a header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
Change a header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
Remove a header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
Provide a header without contents . . . . . . . . . . . . . . . . . . . . . . . 398

Referrer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
Automatic referrer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

Versions 399
Version 2 not mandatory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
Version 3 can be mandatory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

Ranges 401

Authentication 402
User name and password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
Authentication required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
Basic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
Digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
NTLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
Negotiate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
Bearer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
Try-first . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

Cookies 405
Cookie engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

Enable cookie engine with reading . . . . . . . . . . . . . . . . . . . . . . . 405
Enable cookie engine with writing . . . . . . . . . . . . . . . . . . . . . . . 405

Setting custom cookies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
Import export . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

Add a cookie to the cookie store . . . . . . . . . . . . . . . . . . . . . . . . 406
Get all cookies from the cookie store . . . . . . . . . . . . . . . . . . . . . 406
Cookie store commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407



xxii CONTENTS

Cookie file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

Download 408
Download headers too . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

Upload 410
HTTP POST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
HTTP multipart formposts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
HTTP PUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
Expect: headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
Uploads also downloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

Multiplexing 412

HSTS 413
In-memory cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
Enable HSTS for a handle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
Set a HSTS cache file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

alt-svc 414
Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
The alt-svc cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
HTTPS only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
HTTP/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

libcurl helpers 416

Share data between handles 417
Multi handle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
Sharing between easy handles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
What to share . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
Unshare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

URL API 420

Include files 421

Create, cleanup, duplicate 422

Parse a URL 423
CURLU_NON_SUPPORT_SCHEME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
CURLU_URLENCODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
CURLU_DEFAULT_SCHEME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
CURLU_GUESS_SCHEME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
CURLU_NO_AUTHORITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
CURLU_PATH_AS_IS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
CURLU_ALLOW_SPACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

Redirect to URL 425

Get a URL 426



CONTENTS xxiii

Flags 427
CURLU_DEFAULT_PORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
CURLU_DEFAULT_SCHEME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
CURLU_NO_DEFAULT_PORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
CURLU_URLENCODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
CURLU_URLDECODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
CURLU_PUNYCODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

Get URL parts 429
URL parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
Zone ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

Set URL parts 431
Update parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Append to the query 433

CURLOPT_CURLU 434

WebSocket 435

Support 436

URLs 437

Concept 438
1. The callback approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
2. The connect-only approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
Upgrade or die . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
Automatic PONG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

Options 439
Raw mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

Read 440
Write callback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
curl_ws_recv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

Meta 441
age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

CURLWS_TEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
CURLWS_BINARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
CURLWS_FINAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
CURLWS_CLOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
CURLWS_PING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
bytesleft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

Write 443
curl_ws_send() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443



xxiv CONTENTS

Full fragment vs partial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

CURLWS_TEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
CURLWS_BINARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
CURLWS_CONT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
CURLWS_CLOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
CURLWS_PING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
CURLWS_PONG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
CURLWS_OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

Headers API 445
Header origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
Request number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
Header folding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
When . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

Header struct 447
The struct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

Get a header 448

Iterate over headers 449

libcurl examples 450

Get a simple HTTP page 451

Get a response into memory 452

Submit a login form over HTTP 455

Get an FTP directory listing 457

Non-blocking HTTP form-post 458

libcurl bindings 460

libcurl internals 463

Easy handles and connections 464

Everything is multi 465

State machines 466
mstate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

Protocol handler 468
Setup connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
Connect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
Do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
Done . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
Disconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469



CONTENTS xxv

Backends 470
Different backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
Backends visualized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

Caches and state 472
DNS cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
connection cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
TLS session-ID cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
CA store cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
HSTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
Alt-Svc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
Cookies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

Timeouts 474
Exposes just a single timeout to apps . . . . . . . . . . . . . . . . . . . . . . . . 474
Set a timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
Expired timeouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

Windows vs Unix 475
Different function names for socket operations . . . . . . . . . . . . . . . . . . . 475
Init calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
File descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
Stdout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
Ifdefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

Memory debugging 477
Track Down Memory Leaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

Single-threaded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
Build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
Modify Your Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
Run Your Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
Analyze the Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

Content Encoding 479
About content encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
Supported content encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
The libcurl interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
The curl interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

Structs 481
Curl_easy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
connectdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
Curl_multi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
Curl_handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
conncache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
Curl_share . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
CookieInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

Resolving host names 485
CURLRES_IPV6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485



xxvi CONTENTS

CURLRES_ARES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
CURLRES_THREADED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
host*.c sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

Tests 486

Test file format 487
keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
Preprocessed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
Base64 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
Hexadecimal decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
Repeat content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
Conditional lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

Tags 491
<info> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

<keywords> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
<reply> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

<data [nocheck="yes"] [sendzero="yes"] [base64="yes"] [hex="yes"]
[nonewline="yes"]> . . . . . . . . . . . . . . . . . . . . . . . . . . 491

<dataNUMBER> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
<connect> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
<socks> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
<datacheck [mode="text"] [nonewline="yes"]> . . . . . . . . . . . . . 492
<datacheckNUM [nonewline="yes"] [mode="text"]> . . . . . . . . . . . 493
<size> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
<mdtm> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
<postcmd> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
<servercmd> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

<client> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
<server> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
<features> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
<killserver> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
<precheck> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
<postcheck> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
<tool> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
<name> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
<setenv> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
<command [option="no-output/no-include/force-output/binary-trace"]

[timeout="secs"][delay="secs"][type="perl/shell"]> . . . . 497
<file name="log/filename" [nonewline="yes"]> . . . . . . . . . . . . 498
<stdin [nonewline="yes"]> . . . . . . . . . . . . . . . . . . . . . . . . . 498

<verify> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
<errorcode> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
<strip> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
<strippart> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
<protocol [nonewline="yes"]> . . . . . . . . . . . . . . . . . . . . . . . 498
<proxy [nonewline="yes"]> . . . . . . . . . . . . . . . . . . . . . . . . . 498
<stderr [mode="text"] [nonewline="yes"]> . . . . . . . . . . . . . . . 498



CONTENTS xxvii

<stdout [mode="text"] [nonewline="yes"]> . . . . . . . . . . . . . . . 499
<file name="log/filename" [mode="text"]> . . . . . . . . . . . . . . . 499
<file1> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
<file2> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
<file3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
<file4> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
<stripfile> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
<stripfile1> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
<stripfile2> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
<stripfile3> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
<stripfile4> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
<upload> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
<valgrind> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

Build tests 500

Run tests 501
Run a range of tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
Run a specific test with gdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
Run a specific test without valgrind . . . . . . . . . . . . . . . . . . . . . . . . . 501

Debug builds 502
Memdebug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

Test servers 503

curl tests 504

libcurl tests 505

Unit tests 506

Valgrind 507

Continuous Integration 508
Failing builds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508

Autobuilds 509
Check status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
Legacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

Torture 510
Rerun a specific failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
Shallow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

Index 511
A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516



xxviii CONTENTS

F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524



Introduction

Everything curl is an extensive guide for all things curl. The project, the command-line
tool, the library, how everything started and how it came to be the useful tool it is today.
It explains how we work on developing it further, what it takes to use it, how you can
contribute with code or bug reports and why millions of existing users use it.

This book is meant to be interesting and useful to both casual readers and somewhat more
experienced developers. It offers something for everyone to pick and choose from.

Do not read this book from front to back. Read the chapters or content you are curious
about and flip back and forth as you see fit.

This book is an open source project in itself: open, completely free to download and read.
Free for anyone to comment on, and available for everyone to contribute to and help out
with. Send your bug reports, ideas, pull requests or critiques to us and I or someone else
will work on improving the book accordingly.

This book will never be finished. I intend to keep working on it. While I may at some
point consider it fairly complete, covering most aspects of the project (even if only that
seems like an insurmountable goal), the curl project will continue to move so there will
always be things to update in the book as well.

This book project started at the end of September 2015.

Site
https://everything.curl.dev is the home of this book. It features the book online in a web
version.

This book is also provided as a PDF and an ePUB.

Content
All book content is hosted on GitHub in the https://github.com/bagder/everything-curl
repository.

Author
With the hope of becoming just a co-author of this material, I am Daniel Stenberg. I
founded the curl project and I am a developer at heart—for fun and profit. I live and
work in Stockholm, Sweden.

1

https://everything.curl.dev
https://daniel.haxx.se/everything-curl/everything-curl.pdf
https://daniel.haxx.se/everything-curl/everything-curl.epub
https://github.com/bagder/everything-curl


2 INTRODUCTION

All there is to know about Daniel can be found on daniel.haxx.se.

Contribute
If you find mistakes, omissions, errors or blatant lies in this document, please send us a
refreshed version of the affected paragraph and we will amend and update. We give credit
to and recognize everyone who helps out.

Preferably, you could submit errors or pull requests on the book’s GitHub page.

Contributors
Lots of people have reported bugs, improved sections or otherwise helped make this book
the success it is. These friends include the following:

AaronChen0 on github, alawvt on github, Amin Khoshnood, amnkh on github, Anders
Roxell, Angad Gill, Aris (Karim) Merchant, auktis on github, Ben Bodenmiller Ben
Peachey, bookofportals on github, Bruno Baguette, Carlton Gibson, Chris DeLuca, Citizen
Esosa, Dan Fandrich, Daniel Brown, Daniel Sabsay, David Piano, DrDoom74 at GitHub,
Emil Hessman, enachos71 on github, ethomag on github, Fabian Keil, faterer on github,
Frank Dana, Frank Hassanabad, Gautham B A, Geir Hauge, Harry Wright, Helena
Udd, Hubert Lin, i-ky on github, infinnovation-dev on GitHub, Jay Ottinger, Jay Satiro,
Jeroen Ooms, Johan Wigert, John Simpson, JohnCoconut on github, Jonas Forsberg, Josh
Vanderhook, JoyIfBam5, KJM on github, knorr3 on github, lowttl on github, Luca Niccoli,
Manuel on github, Marius Žilėnas, Mark Koester, Martin van den Nieuwelaar, mehandes
on github, Michael Kaufmann, Ms2ger, Mohammadreza Hendiani, Nick Travers, Nicolas
Brassard, Oscar on github, Oskar Köök, Patrik Lundin, RekGRpth on github, Ryan
McQuen, Saravanan Musuwathi Kesavan, Senthil Kumaran, Shusen Liu, Sonia Hamilton,
Spiros Georgaras, Stephen, Steve Holme, Stian Hvatum, strupo on github, Viktor Szakats,
Vitaliy T, Wayne Lai, Wieland Hoffmann,

License
This document is licensed under the Creative Commons Attribution 4.0 license.

https://daniel.haxx.se/
https://github.com/bagder/everything-curl/issues
https://github.com/bagder/everything-curl/pulls
https://creativecommons.org/licenses/by/4.0/


How to read

Here is an overview of the main sections of this book and what they cover.

1. The cURL project
How the project started, how we work and how often releases are made and more.

2. Network and protocols
What exactly are networks and protocols?

3. Install curl and libcurl
How and where to get and install curl.

4. Source code
A description of the curl source tree and how the layout of the code is and works.

5. Build curl
How to build curl and libcurl from source.

6. Command line concepts
Start at the beginning. How do you use curl from a command line?

7. Command line transfers
Going deeper, looking at how to do and control Internet transfers with the curl command
line tool.

8. Command line HTTP
Digging deeper on the HTTP specific actions to do with the curl command line tool.

3



4 HOW TO READ

9. Command line FTP
Learn how to do FTP specific operations with curl in this chapter.

10. libcurl
How libcurl works and how you use it when writing your own applications with it. The
fundamentals.

11. libcurl transfers
How to setup and control libcurl to do Internet transfers using the API.

12. libcurl HTTP
A closer look at doing and controlling HTTP specific transfers with libcurl.

13. libcurl helpers
libcurl provides a set of additional APIs, helpers, that go a little beyond just transfers.
These are APIs and subsystems that can make your libcurl using application excel. Manage
URLs, extract HTTP headers and more.

14. libcurl examples
Stand-alone libcurl using examples showing off how easy it is to write a first simple
application.

15. libcurl bindings
An overview of popular libcurl bindings and how similar they are to the libcurl C API.

16. libcurl internals
Under the hood it works like this. . .

17. Index
The index.



The cURL project

Figure 1: curl logo

A funny detail about Open Source projects is that they are called projects, as if they
were somehow limited in time or ever can get done. The cURL project is a number of
loosely coupled individual volunteers working on writing software together with a common
mission: to do reliable data transfers with Internet protocols, as Open Source.

• How it started
• The name
• What does curl do?
• Project communication
• Mailing list etiquette
• Mailing lists
• Reporting bugs
• Commercial support
• Releases
• Security
• Trust
• Code of Conduct
• Development
• The development team
• Users of curl
• Future

5



How it started

Back in 1996, Daniel Stenberg was writing an IRC bot in his spare time, an automated
program that would offer services for the participants in a chatroom dedicated to the
Amiga computer (#amiga on the IRC network EFnet). He came to think that it would be
fun to get some updated currency rates and have his bot offer a service online for the chat
room users to get current exchange rates, to ask the bot “please exchange 200 USD into
SEK” or similar.

In order to have the provided exchange rates as accurate as possible, the bot would
download the rates daily from a website that was hosting them. A small tool to download
data over HTTP was needed for this task. A quick look-around at the time had Daniel
find a tiny tool named httpget (written by the Brazilian developer Rafael Sagula). It did
the job, almost, just needed a few little tweaks here and there.

Rafael released HttpGet 0.1 on November 11, 1996 and already in the next release, called
0.2 released in December that year, Daniel had his first changes included. Soon after that,
Daniel had taken over maintenance of the few hundred lines of code it was.

HttpGet 1.0 was released on April 8 1997 with brand new HTTP proxy support.

We soon found and fixed support for getting currencies over GOPHER. Once FTP download
support was added, the name of the project was changed and urlget 2.0 was released in
August 1997. The HTTP-only days were already past.

The project slowly grew bigger. When upload capabilities were added and the name once
again was misleading, a second name change was made and on March 20, 1998 curl 4 was
released. (The version numbering from the previous names was kept.)

We consider March 20 1998 to be curl’s birthday.

6

https://daniel.haxx.se/


The name

Naming things is hard.

The tool was about uploading and downloading data specified with a URL. It was a
client-side program (the ‘c’), a URL client, and would show the data (by default). ‘c’
stands for Client and URL: cURL. The fact that it could also be read as see URL helped.

Nothing more was needed so the name was selected and we never looked back again.

Later on, someone suggested that curl could actually be a clever recursive acronym (where
the first letter in the acronym refers back to the same word): “Curl URL Request Library”.

While that is awesome, it was actually not the original thought. We wish we were that
clever. . .

There are and were other projects using the name curl in various ways, but we were not
aware of them by the time our curl came to be.

Pronunciation
Most of us pronounce curl with an initial k sound, just like the English word curl. It
rhymes with words like girl and earl. Merriam Webster has a short WAV file to help.

Confusions and mix-ups
Soon after our curl was created another curl appeared that created a programming language.
That curl still exists.

Several libcurl bindings for various programming languages use the term curl or CURL in
part or completely to describe their bindings. Sometimes you find users talking about curl
but referring to neither the command-line tool nor the library that is made by this project.

As a verb
‘To curl something’ is sometimes used as a reference to use a non-browser tool to download
a file or resource from a URL.

7

https://media.merriam-webster.com/soundc11/c/curl0001.wav
https://www.curl.com


What does curl do?

cURL is a project and its primary purpose and focus is to make two products:

• curl, the command-line tool

• libcurl the transfer library with a C API

Both the tool and the library do Internet transfers for resources specified as URLs using
Internet protocols.

Everything and anything that is related to Internet protocol transfers can be considered
curl’s business. Things that are not related to that should be avoided and be left for other
projects and products.

It could be important to also consider that curl and libcurl try to avoid handling the actual
data that is transferred. It has, for example, no knowledge about HTML or anything
else of the content that is popular to transfer over HTTP, but it knows all about how to
transfer such data over HTTP.

Both products are frequently used not only to drive thousands or millions of scripts and
applications for an Internet connected world, but they are also widely used for server
testing, protocol fiddling and trying out new things.

The library is used in every imaginable sort of embedded device where Internet transfers
are needed: car infotainment, televisions, Blu-Ray players, set-top boxes, printers, routers,
game systems, etc.

Command line tool
Running curl from the command line was natural and Daniel never considered anything
else than that it would output data on stdout, to the terminal, by default. The “everything
is a pipe” mantra of standard Unix philosophy was something Daniel believed in. curl is
like ‘cat’ or one of the other Unix tools; it sends data to stdout to make it easy to chain
together with other tools to do what you want. That is also why virtually all curl options
that allow reading from a file or writing to a file, also have the ability to select doing it to
stdout or from stdin.

Following the Unix style of how command-line tools work, there was also never any question
about whether curl should support multiple URLs on the command line.

The command-line tool is designed to work perfectly from scripts or other automatic
means. It does not feature any other GUI or UI other than mere text in and text out.

8



THE LIBRARY 9

The library
While the command-line tool came first, the network engine was ripped out and converted
into a library during the year 2000 and the concepts we still have today were introduced
with libcurl 7.1 in August 2000. Since then, the command line tool has been a thin layer
of logic to make a tool around the library that does all the heavy lifting.

libcurl is designed and meant to be available for anyone who wants to add client-side
file transfer capabilities to their software, on any platform, any architecture and for any
purpose. libcurl is also extremely liberally licensed to avoid that becoming an obstacle.

libcurl is written in traditional and conservative C. Where other languages are preferred,
people have created libcurl bindings for them.



Project communication

cURL is an Open Source project consisting of voluntary members from all over the world,
living and working in a large number of the world’s time zones. To make such a setup
actually work, communication and openness is key. We keep all communication public
and we use open communication channels. Most discussions are held on mailing lists, we
use bug trackers where all issues are discussed and handled with full insight for everyone
who cares to look.

It is important to realize that we are all jointly taking care of the project, we fix problems
and we add features. Sometimes a regular contributor grows bored and fades away,
sometimes a new eager contributor steps out from the shadows and starts helping out more.
To keep this ship going forward as well as possible, it is important that we maintain open
discussions and that is one of the reasons why we frown upon users who take discussions
privately or try to email individual team members about development issues, questions,
debugging or whatever.

In this day, mailing lists may be considered the old style of communication — no fancy web
forums or similar. Using a mailing list is therefore becoming an art that is not practiced
everywhere and may be a bit strange and unusual to you. But fear not. It is just about
sending emails to an address that then sends that email out to all the subscribers. Our
mailing lists have at most a few thousand subscribers. If you are mailing for the first
time, it might be good to read a few old mails first to get to learn the culture and what’s
considered good practice.

The mailing lists and the bug tracker have changed hosting providers a few times and
there are reasons to suspect it might happen again in the future. It is just the kind of
thing that happens to a project that lives for a long time.

A few users also hang out on IRC in the #curl channel on libera.chat.

10

https://libera.chat/


Mailing list etiquette

Like many communities and subcultures, we have developed guidelines and rules of what
we think is the right way to behave and how to communicate on the mailing lists. The
curl mailing list etiquette follows the style of traditional Open Source projects.

Do not mail a single individual
Many people send one question directly to one person. One person gets many mails, and
there is only one person who can give you a reply. The question may be something that
other people also want to ask. These other people have no way to read the reply but to
ask the one person the question. The one person consequently gets overloaded with mail.

If you really want to contact an individual and perhaps pay for his or her services, by all
means go ahead, but if it is just another curl question, take it to a suitable list instead.

Reply or new mail
Please do not reply to an existing message as a shortcut to post a message to the lists.

Many mail programs and web archivers use information within mails to keep them together
as threads, as collections of posts that discuss a certain subject. If you do not intend to
reply on the same or similar subject, do not just hit reply on an existing mail and change
the subject; create a new mail.

Reply to the list
When replying to a message from the list, make sure that you do group reply or reply to
all, and not just reply to the author of the single mail you reply to.

We are actively discouraging replying back to just a single person privately. Keep follow-ups
on discussions on the list.

Use a sensible subject
Please use a subject of the mail that makes sense and that is related to the contents of
your mail. It makes it a lot easier to find your mail afterwards and it makes it easier to
track mail threads and topics.

11

https://curl.se/mail/etiquette.html


12 MAILING LIST ETIQUETTE

Do not top-post
If you reply to a message, do not use top-posting. Top-posting is when you write the new
text at the top of a mail and you insert the previous quoted mail conversation below. It
forces users to read the mail in a backwards order to properly understand it.

This is why top posting is so bad:

A: Because it messes up the order in which people normally read text.
Q: Why is top-posting such a bad thing?
A: Top-posting.
Q: What is the most annoying thing in email?

Apart from the screwed-up read order (especially when mixed together in a thread when
someone responds using the mandated bottom-posting style), it also makes it impossible
to quote only parts of the original mail.

When you reply to a mail you let the mail client insert the previous mail quoted. Then you
put the cursor on the first line of the mail and you move down through the mail, deleting
all parts of the quotes that do not add context for your comments. When you want to add
a comment you do so, inline, right after the quotes that relate to your comment. Then
you continue downwards again.

When most of the quotes have been removed and you have added your own words, you
are done.

HTML is not for mails
Please switch off those HTML encoded messages. You can mail all those funny mails to
your friends. We speak plain text mails.

Quoting
Quote as little as possible. Just enough to provide the context you cannot leave out. A
lengthy description can be found here.

Digest
We allow subscribers to subscribe to the digest version of the mailing lists. A digest is a
collection of mails lumped together in one single mail.

Should you decide to reply to a mail sent out as a digest, there are two things you MUST
consider if you really cannot subscribe normally instead:

Cut off all mails and chatter that is not related to the mail you want to reply to.

Change the subject name to something sensible and related to the subject, preferably even
the actual subject of the single mail you wanted to reply to.

https://www.netmeister.org/news/learn2quote.html


PLEASE TELL US HOW YOU SOLVED THE PROBLEM 13

Please tell us how you solved the problem
Many people mail questions to the list, people spend some of their time and make an
effort in providing good answers to these questions.

If you are the one who asks, please consider responding once more in case one of the hints
was what solved your problems. Those who write answers feel good to know that they
provided a good answer and that you fixed the problem. Far too often, the person who
asked the question is never heard of again, and we never get to know if he/she is gone
because the problem was solved or perhaps because the problem was unsolvable.

Getting the solution posted also helps other users that experience the same problem(s).
They get to see (possibly in the web archives) that the suggested fixes actually helped at
least one person.



Mailing lists

Some of the most important mailing lists are. . .

curl-users
The main mailing list for users and developers of the curl command-line tool, for questions
and help around curl concepts, command-line options, the protocols curl can speak or even
related tools. We tend to move development issues or more advanced bug fixes discussions
over to curl-library instead, since libcurl is the engine that drives most of curl.

See curl-users

curl-library
The main development list, and also for users of libcurl. We discuss how to use libcurl
in applications as well as development of libcurl itself. Questions on libcurl behavior,
debugging and documentation issues etc.

See curl-library

curl-announce
This mailing list only gets announcements about new releases and security problems—
nothing else. This one is for those who want a more casual feed of information from the
project.

See curl-announce

14

https://lists.haxx.se/listinfo/curl-users
https://lists.haxx.se/listinfo/curl-library
https://lists.haxx.se/listinfo/curl-announce


Reporting bugs

The development team does a lot of testing. We have a whole test suite that is run
frequently every day on numerous platforms in order to exercise all code and make sure
everything works as expected.

Still, there are times when things do not work the way they should, and we depend on
people reporting it to us.

A bug is a problem
Any problem can be considered a bug. A weirdly phrased wording in the manual that
prevents you from understanding something is a bug. A surprising side effect of combining
multiple options can be a bug—or perhaps it should be better documented? Perhaps the
option does not do at all what you expected it to? That is a problem and we should fix it.

Problems must be known to get fixed
This may sound easy and uncomplicated but is a fundamental truth in our and other
projects. Just because it is an old project and has thousands of users does not mean the
development team knows about the problem you just stumbled into. Maybe users have
not paid attention to details as much as you have, or perhaps it just never triggered for
anyone else.

We rely on users experiencing problems to report them. We need to know of their existence
in order to fix them.

Fixing the problems
Software engineering is, to a large degree, about fixing problems. To fix a problem a
developer needs to understand how to repeat it, and to do that they need to be told what
set of circumstances triggered the problem.

A good bug report
A good report explains what happened and what you thought was going to happen. Tell
us exactly what versions of the different components you used and take us step by step
through what you did to arrive at the problem.

15



16 REPORTING BUGS

After you submit a bug report, you can expect there to be follow-up questions or perhaps
requests that you try out various things so the developer can narrow down the suspects
and make sure your problem is properly located.

A bug report that is submitted then abandoned by the submitter risks getting closed if
the developer fails to understand it, fails to reproduce it or faces other problems when
working on it. Do not abandon your report.

Report curl bugs in the curl bug tracker on GitHub.

Testing
Testing software thoroughly and properly is a lot of work. Testing software that runs on
dozens of operating systems and CPU architectures, with server implementations which
have their own sets of bugs and interpretations of the specs, is even more work.

The curl project has a test suite that iterates over all existing test cases, runs each test
and verifies that the outcome is correct and that no other problem happened, such as a
memory leak or something fishy in the protocol layer.

The test suite is meant to be run after you have built curl yourself. There are a number of
volunteers who also help out by running the test suite automatically a few times per day
to make sure the latest commits are tested. This way we discover the worst flaws not long
after their introduction.

We do not test everything, and even when we try to test things there are always subtle
bugs that get through, some that are only discovered years later.

Due to the nature of different systems and funny use cases on the Internet, eventually
some of the best testing is done by users when they run the code to perform their own use
cases.

Another limiting factor with the test suite is that the test setup itself is less portable
than curl and libcurl, so there are in fact platforms where curl runs fine but the test suite
cannot execute at all.

https://github.com/curl/curl/issues


Commercial support

Commercial support for curl and libcurl is offered and provided by Daniel Stenberg (the
curl founder) through the company wolfSSL.

wolfSSL offers world-wide commercial support on curl done by the masters of curl. wolfSSL
handles curl customization, ports to new operating systems, feature development, patch
maintenance, bug fixing, upstreaming, training, code reviews of libcurl API use, security
scanning your curl use and more - with several different support options from basic up to
full 24/7 support. With guaranteed response times.

See the support page for contact details.

17

https://wolfssl.com
https://curl.se/support.html


Releases

A release in the curl project means packaging up all the source code that is in the master
branch of the code repository, signing the package, tagging the point in the code repository,
and then putting it up on the website for the world to download.

It is one single source code archive for all platforms curl can run on. It is the one and only
package for both curl and libcurl.

We never ship any curl or libcurl binaries from the project with one exception: we host
official curl binaries built for Windows users. All the other packaged binaries that are
provided with operating systems or on other download sites are done by gracious volunteers
outside of the project.

As of several years back, we make an effort to do our releases on an eight week cycle and
unless some really serious and urgent problem shows up we stick to this schedule. We
release on a Wednesday, and then again a Wednesday eight weeks later and so it continues.
Non-stop.

For every release we tag the source code in the repository with the curl version number
and we update the changelog.

We had done a total of 253 releases by January 2024. The entire release history and
changelog is available in our curl release log.

Release cycle

Daily snapshots
Every single change to the source code is committed and pushed to the source code
repository. This repository is hosted on github.com and is using git these days (but has not
always been this way). When building curl off the repository, there are a few things you
need to generate and set up that sometimes cause people some problems or just friction.
To help with that, we provide daily snapshots.

The daily snapshots are generated daily (clever naming, right?) as if a release had been
made at that point. It produces a package of all source code and all files that are normally
part of a release and puts it in a package and uploads it to this special place to allow
interested people to get the latest code to test, to experiment or whatever.

The snapshots are kept for around 20 days until deleted.

18

https://curl.se/changes.html
https://curl.se/docs/releases.html
https://curl.se/snapshots/


DAILY SNAPSHOTS 19

Figure 2: The curl release cycle visualized



Security

Security is a primary concern for us in the curl project. We take it seriously and we work
hard on providing secure and safe implementations of all protocols and related code. As
soon as we get knowledge about a security related problem or just a suspected problem,
we deal with it and we attempt to provide a fix and security notice no later than in the
next pending release.

We use a responsible disclosure policy, meaning that we prefer to discuss and work on
security fixes out of the public eye and we alert the vendors on the openwall.org list a few
days before we announce the problem and fix to the world. This, in an attempt to shorten
the time span the bad guys can take advantage of a problem until a fixed version has been
deployed.

Past security problems
During the years we have had our fair share of security related problems. We work hard
on documenting every problem thoroughly with all details listed and clearly stated to
aid users. Users of curl should be able to figure out what problems their particular curl
versions and use cases are vulnerable to.

To help with this, we present this waterfall chart showing how all vulnerabilities affect
which curl versions and we have this complete list of all known security problems since the
birth of this project.

20

https://curl.se/docs/security.html
https://curl.se/docs/vulnerabilities.html


Trust

For a software to conquer the world, it needs to be trusted. It takes trust to build more
trust and it can all be broken down really fast if the foundation is proven to have cracks.

In the curl project we build trust for our users in a few different ways:

1. We are completely transparent about everything. Every decision, every discussion
as well as every line of code and every considered code change are always public and
done in the open.

2. We work hard to write reliable code. We write test cases, we review code, we
document best practices and we have a style guide that helps us keep code consistent.

3. We stick to promises and guarantees as much as possible. We do not break APIs
and we do not abandon support for old systems.

4. Security is of utmost importance and we take every reported incident seriously and
realize that we must fix all known problems and we need to do it responsibly. We
do our best to not endanger our users.

5. We act like adults. We can be silly and we can joke around, but we do it responsibly
and we follow our Code of Conduct. Everyone should be able to even trust us to
behave.

21



Code of Conduct

As contributors and maintainers of this project, we pledge to respect all people who
contribute through reporting issues, posting feature requests, updating documentation,
submitting pull requests or patches, and other activities.

We are committed to making participation in this project a harassment-free experience for
everyone, regardless of level of experience, gender, gender identity and expression, sexual
orientation, disability, personal appearance, body size, race, ethnicity, age, or religion.

Examples of unacceptable behavior by participants include the use of sexual language or
imagery, derogatory comments or personal attacks, trolling, public or private harassment,
insults, or other unprofessional conduct.

Project maintainers have the right and responsibility to remove, edit, or reject comments,
commits, code, wiki edits, issues, and other contributions that are not aligned to this Code
of Conduct. Project maintainers who do not follow the Code of Conduct may be removed
from the project team.

This code of conduct applies both within project spaces and in public spaces when an
individual is representing the project or its community.

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by
opening an issue or contacting one or more of the project maintainers.

22



Development

We encourage everyone to participate in the development of curl and libcurl. We appreciate
all the help we can get and while the main portion of this project is source code, there is a
lot more than just coding and debugging help that is needed and useful.

We develop and discuss everything in the open, preferably on the mailing lists.

Source code on GitHub
The source code to curl and libcurl have also been provided and published publicly and it
continues to be uploaded to the main web site for every release.

Since March 2010, the curl source code repository has been hosted on github.com. By
being up to date with the changes there, you can follow our day to day development
closely.

23

https://curl.se/
https://github.com/


The development team

Daniel Stenberg is the founder and self-proclaimed leader of the project. Everybody else
that participates or contributes in the project has thus arrived at a later point. Some
contributors worked for a while and then left again. Most contributors hang around only for
a short while to get their bug fixed or feature merged or similar. Counting all contributors
we know the names of, we have received help from more than 3,000 individuals.

There is no formal membership or anything that needs to be done to join the project.
If you participate in communication or development, you are part of the project. Every
contributor decides for themselves exactly how much and in what ways to participate.

The full list of people who ever did ten commits or more within a single year in the project
are:

Alessandro Ghedini, Ben Greear, Benoit Neil, Bill Hoffman, Bill Nagel, Björn Sten-
berg, Brad Hards, Dan Fandrich, Daniel Gustafsson, Daniel Stenberg, Dominick Meglio,
Emanuele Torre, Emil Engler, Fabian Frank, Fabian Keil, Gergely Nagy, Gisle Vanem,
Guenter Knauf, Harry Sintonen, Isaac Boukris, Jacob Hoffman-Andrews, Jakub Zakrzewski,
James Housley, Jay Satiro, Jiri Hruska, Joe Mason, Johannes Schindelin, Josh Soref, Julien
Chaffraix, Kamil Dudka, Marc Hoersken, Marcel Raad, Mark Salisbury, Marty Kuhrt,
Max Dymond, Michael Kaufmann, Michael Osipov, Michal Marek, Michał Antoniak,
Nicholas Nethercote, Nick Zitzmann, Nikos Mavrogiannopoulos, Patrick Monnerat, Peter
Wu, Philip Heiduck, Rikard Falkeborn, Ruslan Baratov, Ryan Schmidt, Simon Warta,
Stefan Eissing, Steinar H. Gunderson, Sterling Hughes, Steve Holme, Svyatoslav Mishyn,
Tatsuhiro Tsujikawa, Tor Arntsen, Viktor Szakats, Yang Tse

24



Users of curl

Figure 3: twenty billion installations

We estimate that there are more than twenty billion curl installations in the world. It
makes a good line to say but in reality we, of course, do not have any numbers that exact.
We just estimate and guess based on observations and trends. It also depends on exactly
what we consider “an installation”. Let’s elaborate.

Open Source
The project being Open Source and liberally licensed means that just about anyone can
redistribute curl in source format or built into binary form.

Counting downloads
The curl command-line tool and the libcurl library are available for download for most
operating systems via the curl website, they are provided via third party installers to
a bunch and they come installed by default with even more operating systems. This
makes counting downloads from the curl website completely inappropriate as a means of
measurement.

25



26 USERS OF CURL

Finding users
So, we cannot count downloads and anyone may redistribute it and nobody is forced to
tell us they use curl. How can we figure out the numbers? How can we figure out the
users? The answer is that we really cannot with any decent level of accuracy.

Instead we rely on witness reports, circumstantial evidence, on findings on the Internet,
the occasional “about box” or license agreement mentioning curl or that authors ask for
help and tell us about their use.

The curl license says users need to repeat it somewhere, like in the documentation, but
that is not easy for us to find in many cases and it is also not easy for us to do anything
about should they decide not to follow the small license requirement.

Command-line tool users
The command-line tool curl is widely used by programmers around the world in shell and
batch scripts, to debug servers and to test out things. There is no doubt it is used by
millions every day.

Embedded library
libcurl is what makes our project reach a really large volume of users. The ability to
quickly and easily get client side file transfer abilities into your application is desirable for
a lot of users, and then libcurl’s great portability also helps: you can write more or less
the same application on a wide variety of platforms and you can still keep using libcurl for
transfers.

libcurl being written in C with no or just a few required dependencies also help to get it
used in embedded systems.

libcurl is popularly used in smartphone operating systems, in car infotainment setups, in
television sets, in set-top boxes, in audio and video equipment such as Blu-Ray players
and higher-end receivers. It is often used in home routers and printers.

A fair number of best-selling games are also using libcurl, on Windows and game consoles.

In website backends
The libcurl binding for PHP was one of, if not the, first bindings for libcurl to really catch
on and get used widely. It quickly got adopted as a default way for PHP users to transfer
data and as it has now been in that position for over a decade and PHP has turned out to
be a fairly popular technology on the Internet (recent numbers indicated that something
like a quarter of all sites on the Internet uses PHP).

A few really high-demand sites are using PHP and are using libcurl in the backend.
Facebook and Yahoo are two such sites.



FAMOUS USERS 27

Figure 4: different devices, tool, applications and services that all run curl

Famous users
Nothing forces users to tell us they use curl or libcurl in their services or in the products.
We usually only find out they do by accident, by reading about dialogues, documentation
and license agreements. Of course some companies also just flat out tell us.

We used to collect names of companies and products on our website of users that use the
project’s products “in commercial environments”. We did this mostly just to show-off to
other big brands that if these other guys can build products that depend on us, maybe
you can, too?

The list of companies contains hundreds of names, but extracting some of the larger or
more well-known brands, here’s a pretty good list that, of course, is only a small selection:

Adobe, Altera, AOL, Apple, AT&T, BBC, Blackberry, BMW, Bosch, Broadcom, Chevrolet,
Cisco, Comcast, Facebook, Google, Hitachi, Honeywell, HP, Huawei, HTC, IBM, Intel, LG,
Mazda, Mercedes-Benz, Microsoft, Motorola, NASA, Netflix, Nintendo, Oracle, Panasonic,
Philips, Pioneer, RBS, Samsung, SanDisk, SAP, SAS Institute, SEB, Sharp, Siemens, Sony,
Spotify, Sun, Swisscom, Tomtom, Toshiba, VMware, Xilinx, Yahoo, Yamaha

Famous high volume apps using curl
The Google Youtube app, the Google Photos app, Spotify, Instagram, Skype (on Android),
bundled with iOS, Grand Theft Auto V, Fortnite.



Future

Figure 5: curl future

There is no slowdown in sight in curl’s future, bugs reported, development pace or how
Internet protocols are being developed or updated.

We are looking forward to support for more protocols, support for more features within
the already supported protocols, and more and better APIs for libcurl to allow users to do
transfers even better and faster.

The project casually maintains a TODO file holding a bunch of ideas that we could work
on in the future. It also keeps a KNOWN_BUGS document with a list of known problems
we would like to fix.

There is a ROADMAP document that describes some plans for the short-term that some
of the active developers thought they would work on next. Of course, we can not promise
that we will always follow it.

28

https://curl.se/docs/todo.html
https://curl.se/docs/knownbugs.html
https://curl.se/dev/roadmap.html


29

We are highly dependent on developers to join in and work on what they want to get done,
be it bug fixes or new features.



Network and protocols

Before diving in and talking about how to use curl to get things done, let’s take a look
at what all this networking is and how it works, using simplifications and some minor
shortcuts to give an easy overview.

The basics are in the networking simplified chapter that tries to just draw a simple picture
of what networking is from a curl perspective, and the protocols section which explains
what exactly a “protocol” is and how that works.

• Networking simplified
• Protocols
• curl protocols
• HTTP basics

30



Networking simplified

Networking means communicating between two endpoints on the Internet. The Internet is
just a bunch of interconnected machines (computers really), each using its own individual
addresses (called IP addresses). The addresses each machine has can be of different types
and machines can even have temporary addresses. These computers are also called hosts.

Client and server
The computer, tablet or phone you sit in front of is usually called the client and the
machine out there somewhere that you want to exchange data with is called the server.
The main difference between the client and the server is in the roles they play. There is
nothing that prevents the roles from being reversed in a subsequent operation.

A transfer initiative is always taken by the client, as the server cannot contact the client
but the client can contact the server.

Which machine
When we as a client want to initiate a transfer from or to one of the machines out there (a
server), we usually do not know its IP addresses but instead we usually know its name.
The name of the machine to communicate with is typically embedded in the URL that we
work with when we use tools like curl or a browser.

We might use a URL like http://example.com/index.html, which means the client
connects to and communicates with the host named example.com.

Hostname resolving
Once the client knows the hostname, it needs to figure out which IP addresses the host
with that name has so that it can contact it.

Converting the name to an IP address is called ‘name resolving’. The name is resolved
to one or a set of addresses. This is usually done by a DNS server, DNS being like a big
lookup table that can convert names to addresses—all the names on the Internet, really.
The computer normally already knows the address of a computer that runs the DNS server
as that is part of setting up the network.

The network client therefore asks the DNS server, Hello, please give me all the addresses
for example.com. The DNS server responds with a list of addresses back. Or in case of
spelling errors, it can answer back that the name does not exist.

31

https://en.wikipedia.org/wiki/IP_address


32 NETWORKING SIMPLIFIED

Establish a connection
With one or more IP addresses for the host the client wants to contact, it sends a connect
request. The connection it wants to establish is called a TCP (Transmission Control
Protocol) or QUIC connection, which is like connecting an invisible string between two
computers. Once established, the string can be used to send a stream of data in both
directions.

If the client has received more than one address for the host, it traverses that list of
addresses when connecting, and if one address fails it tries to connect to the next one,
repeating until either one address works or they have all failed.

Connect to port numbers
When connecting with TCP or QUIC to a remote server, a client selects which port number
to do that on. A port number is just a dedicated place for a particular service, which
allows that same server to listen to other services on other port numbers at the same time.

Most common protocols have default port numbers that clients and servers use. For
example, when using the http://example.com/index.html URL, that URL specifies a
scheme called HTTP which tells the client that it should try TCP port number 80 on the
server by default. If the URL uses HTTPS instead, the default port number is 443.

The URL can include a custom port number. If a port number is not specified, the client
uses the default port for the scheme used in the URL.

Security
After a TCP connection has been established, many transfers require that both sides
negotiate a better security level before continuing (if for example HTTPS is used), which is
done with TLS (Transport Layer Security). If so, the client and server do a TLS handshake
first, and continue further only if that succeeds.

If the connection is done using QUIC, the TLS handshake is done automatically in the
connect phase.

Transfer data
When the connected metaphorical string is attached to the remote computer, there is
a connection established between the two machines. This connection can then be used
to exchange data. This exchange is done using a protocol, as discussed in the following
chapter.

Traditionally, a download is when data is transferred from a server to a client; conversely,
an upload is when data is sent from the client to the server. The client is down here; the
server is up there.

https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/QUIC
https://en.wikipedia.org/wiki/Transport_Layer_Security


DISCONNECT 33

Disconnect
When a single transfer is completed, the connection may have served its purpose. It can
then either be reused for further transfers, or it can be disconnected and closed.



Protocols

The language used to ask for data to get sent—in either direction—is called the protocol.
The protocol describes exactly how to ask the server for data, or to tell the server that
there is data coming.

Protocols are typically defined by the IETF (Internet Engineering Task Force), which
hosts RFC documents that describe exactly how each protocol works: how clients and
servers are supposed to act and what to send and so on.

What protocols does curl support?
curl supports protocols that allow data transfers in either or both directions. We usually
also restrict ourselves to protocols which have a URI format described in an RFC or at
least is somewhat widely used, as curl works primarily with URLs (URIs really) as the
input key that specifies the transfer.

The latest curl (as of this writing) supports these protocols:

DICT, FILE, FTP, FTPS, GOPHER, GOPHERS, HTTP, HTTPS, IMAP, IMAPS, LDAP,
LDAPS, MQTT, POP3, POP3S, RTMP, RTSP, SCP, SFTP, SMB, SMBS, SMTP, SMTPS,
TELNET, TFTP, WS, WSS

To complicate matters further, the protocols often exist in different versions or flavors as
well.

What other protocols are there?
The world is full of protocols, both old and new. Old protocols get abandoned and dropped
and new ones get introduced. There is never a state of stability but the situation changes
from day to day and year to year. You can rest assured that there will be new protocols
added in the list above in the future and that there will be new versions of the protocols
already listed.

There are, of course, already other protocols in existence that curl does not yet support.
We are open to supporting more protocols that suit the general curl paradigms, we just
need developers to write the necessary code adjustments for them.

How are protocols developed?
Both new versions of existing protocols and entirely new protocols are usually developed
by persons or teams that feel that the existing ones are not good enough. Something

34

https://www.ietf.org/


HOW MUCH DO PROTOCOLS CHANGE? 35

about them makes them not suitable for a particular use case or perhaps some new idea
has popped up that could be applied to improve things.

Of course, nothing prevents anyone from developing a protocol entirely on their own at
their own pleasure in their own backyard, but the major protocols are usually brought
to the IETF at a fairly early stage where they are then discussed, refined, debated and
polished and then eventually, ideally, turned into a published RFC document.

Software developers then read the RFC specifications and deploy their code in the world
based on their interpretations of the words in those documents. It sometimes turns out
that some of the specifications are subject to vastly different interpretations or sometimes
the engineers are just lazy and ignore sound advice in the specs and deploy something
that does not adhere. Writing software that interoperates with other implementations of
the specifications can therefore end up being hard work.

How much do protocols change?
Like software, protocol specifications are frequently updated and new protocol versions
are created.

Most protocols allow some level of extensibility which makes new extensions show up over
time, extensions that make sense to support.

The interpretation of a protocol sometimes changes even if the spec remains the same.

The protocols mentioned in this chapter are all Application Protocols, which means they
are transferred over more lower level protocols, like TCP, UDP and TLS. They are also
themselves protocols that change over time, get new features and get attacked so that new
ways of handling security, etc., forces curl to adapt and change.

About adhering to standards and who is right
Generally, there are protocol specs that tell us how to send and receive data for specific
protocols. The protocol specs we follow are RFCs put together and published by IETF.

Some protocols are not properly documented in a final RFC, like, for example, SFTP for
which our implementation is based on an Internet-draft that is not even the last available
one.

Protocols are, however, spoken by two parties and like in any given conversation, there
are then two sides of understanding something or interpreting the given instructions in a
spec. Also, lots of network software is written without the authors paying close attention
to the spec so they end up taking some shortcuts, or perhaps they just interpreted the
text differently. Sometimes even mistakes and bugs make software behave in ways that
are not mandated by the spec and sometimes even downright forbidden in the specs.

In the curl project we use the published specs as rules on how to act until we learn anything
else. If popular alternative implementations act differently than what we think the spec
says and that alternative behavior is what works widely on the big Internet, then chances
are we change foot and instead decide to act like those others. If a server refuses to talk
with us when we think we follow the spec but works fine when we bend the rules ever so



36 PROTOCOLS

slightly, then we probably end up bending them exactly that way—if we can still work
successfully with other implementations.

Ultimately, it is a personal decision and up for discussion in every case where we think a
spec and the real world do not align.

In the worst cases we introduce options to let application developers and curl users have
the final say on what curl should do. I say worst because it is often really tough to ask
users to make these decisions as it usually involves tricky details and weirdness going on
and it is a lot to ask of users. We should always do our best to avoid pushing such protocol
decisions to users.



curl protocols

curl supports about 28 protocols. We say about because it depends on how you count and
what you consider to be distinctly different protocols.

DICT
DICT is a dictionary network protocol, it allows clients to ask dictionary servers about a
meaning or explanation for words. See RFC 2229. Dict servers and clients use TCP port
2628.

FILE
FILE is not actually a network protocol. It is a URL scheme that allows you to tell curl
to get a file from the local file system instead of getting it over the network from a remote
server. See RFC 1738.

FTP
FTP stands for File Transfer Protocol and is an old (originates in the early 1970s) way
to transfer files back and forth between a client and a server. See RFC 959. It has been
extended greatly over the years. FTP servers and clients use TCP port 21 plus one more
port, though the second one is usually dynamically established during communication.

See the external page FTP vs HTTP for how it differs from HTTP.

FTPS
FTPS stands for Secure File Transfer Protocol. It follows the tradition of appending an
‘S’ to the protocol name to signify that the protocol is done like normal FTP but with an
added SSL/TLS security layer. See RFC 4217.

This protocol is problematic to use through firewalls and other network equipment.

GOPHER
Designed for “distributing, searching, and retrieving documents over the Internet”, Gopher
is somewhat of the grandfather to HTTP as HTTP has mostly taken over completely for
the same use cases. See RFC 1436. Gopher servers and clients use TCP port 70.

37

https://daniel.haxx.se/docs/ftp-vs-http.html


38 CURL PROTOCOLS

GOPHERS
Gopher over TLS. A recent extension to the old protocol.

HTTP
The Hypertext Transfer Protocol, HTTP, is the most widely used protocol for transferring
data on the web and over the Internet. See RFC 9110 for general HTTP Semantics, RFC
9112 for HTTP/1.1, RFC 9113 for HTTP/2 and RFC 9114 for HTTP/3. HTTP servers
and clients use TCP port 80.

HTTPS
Secure HTTP is HTTP done over an SSL/TLS connection. See RFC 2818. HTTPS servers
and clients use TCP port 443, unless they speak HTTP/3 which then uses QUIC (RFC
8999) and is done over UDP.

IMAP
The Internet Message Access Protocol, IMAP, is a protocol for accessing, controlling and
“reading” email. See RFC 3501. IMAP servers and clients use TCP port 143. Whilst
connections to the server start out as cleartext, SSL/TLS communication may be supported
by the client explicitly requesting to upgrade the connection using the STARTTLS command.
See RFC 2595.

IMAPS
Secure IMAP is IMAP done over an SSL/TLS connection. Such connections implicitly
start out using SSL/TLS and as such servers and clients use TCP port 993 to communicate
with each other. See RFC 8314.

LDAP
The Lightweight Directory Access Protocol, LDAP, is a protocol for accessing and main-
taining distributed directory information. Basically a database lookup. See RFC 4511.
LDAP servers and clients use TCP port 389.

LDAPS
Secure LDAP is LDAP done over an SSL/TLS connection.

MQTT
Message Queuing Telemetry Transport, MQTT, is a protocol commonly used in IoT systems
for interchanging data mostly involving smaller devices. It is a so-called “publish-subscribe”
protocol.



POP3 39

POP3
The Post Office Protocol version 3 (POP3) is a protocol for retrieving email from a server.
See RFC 1939. POP3 servers and clients use TCP port 110. Whilst connections to the
server start out as cleartext, SSL/TLS communication may be supported by the client
explicitly requesting to upgrade the connection using the STLS command. See RFC 2595.

POP3S
Secure POP3 is POP3 done over an SSL/TLS connection. Such connections implicitly
start out using SSL/TLS and as such servers and clients use TCP port 995 to communicate
with each other. See RFC 8314.

RTMP
The Real-Time Messaging Protocol (RTMP) is a protocol for streaming audio, video and
data. RTMP servers and clients use TCP port 1935.

RTSP
The Real Time Streaming Protocol (RTSP) is a network control protocol to control
streaming media servers. See RFC 2326. RTSP servers and clients use TCP and UDP
port 554.

SCP
The Secure Copy (SCP) protocol is designed to copy files to and from a remote SSH server.
SCP servers and clients use TCP port 22.

SFTP
The SSH File Transfer Protocol (SFTP) that provides file access, file transfer, and file
management over a reliable data stream. SFTP servers and clients use TCP port 22.

SMB
The Server Message Block (SMB) protocol is also known as CIFS. It is an application-layer
network protocol mainly used for providing shared access to files, printers, and serial ports
and miscellaneous communications between nodes on a network. SMB servers and clients
use TCP port 445.

SMBS
SMB done over TLS.



40 CURL PROTOCOLS

SMTP
The Simple Mail Transfer Protocol (SMTP) is a protocol for email transmission. See
RFC 5321. SMTP servers and clients use TCP port 25. Whilst connections to the server
start out as cleartext, SSL/TLS communication may be supported by the client explicitly
requesting to upgrade the connection using the STARTTLS command. See RFC 3207.

SMTPS
Secure SMTP, is SMTP done over an SSL/TLS connection. Such connections implicitly
start out using SSL/TLS and as such servers and clients use TCP port 465 to communicate
with each other. See RFC 8314.

TELNET
TELNET is an application layer protocol used over networks to provide a bidirectional
interactive text-oriented communication facility using a virtual terminal connection. See
RFC 854. TELNET servers and clients use TCP port 23.

TFTP
The Trivial File Transfer Protocol (TFTP) is a protocol for doing simple file transfers
over UDP to get a file from or put a file onto a remote host. TFTP servers and clients use
UDP port 69.

WS
WebSocket is a bidirectional TCP-like protocol, setup over an HTTP(S) request. WS is
the scheme for the clear text version done over plain HTTP. Experimental support for
this was added to curl 7.86.0.

WSS
WebSocket is a bidirectional TCP-like protocol, setup over an HTTP(S) request. WSS is
the scheme for the secure version done over HTTPS. Experimental support for this was
added to curl 7.86.0.



HTTP basics

HTTP is a protocol that is easy to learn the basics of. A client connects to a server—and
it is always the client that takes the initiative—sends a request and receives a response.
Both the request and the response consist of headers and a body. There can be little or a
lot of information going in both directions.

An HTTP request sent by a client starts with a request line, followed by headers and then
optionally a body. The most common HTTP request is probably the GET request which
asks the server to return a specific resource, and this request does not contain a body.

When a client connects to ‘example.com’ and asks for the ‘/’ resource, it sends a GET
without a request body:

GET / HTTP/1.1
User-agent: curl/2000
Host: example.com

. . . the server could respond with something like below, with response headers and a
response body (‘hello’). The first line in the response also contains the response code and
the specific version the server supports:

HTTP/1.1 200 OK
Server: example-server/1.1
Content-Length: 5
Content-Type: plain/text

hello

If the client would instead send a request with a small request body (‘hello’), it could look
like this:

POST / HTTP/1.1
Host: example.com
User-agent: curl/2000
Content-Length: 5

hello

A server always responds to an HTTP request unless something is wrong.

41



42 HTTP BASICS

The URL converted to a request
So when an HTTP client is given a URL to operate on, that URL is then used, picked
apart and those parts are used in various places in the outgoing request to the server.
Let’s take an example URL:

https://www.example.com/path/to/file

• https means that curl uses TLS to the remote port 443 (which is the default port
number when no specified is used in the URL).

• www.example.com is the hostname that curl resolves to one or more IP addresses
to connect to. This hostname is also used in the HTTP request in the Host: header.

• /path/to/file is used in the HTTP request to tell the server which exact docu-
ment/resources curl wants to fetch



Install curl and libcurl

curl is totally free, open and available. There are numerous ways to get it and install it
for most operating systems and architecture. This section gives you some answers to start
with, but is not a complete reference.

Some operating systems ship curl by default. Some do not.

In addition, You can always download the source from curl.se or find binary packages to
download from there.

Commonly, libcurl is installed at the same time as curl.

• Linux
• Windows
• macOS
• Container

43

https://curl.se


Linux

Linux distributions come with packager managers that let you install software that they
offer. Most Linux distributions offer curl and libcurl to be installed if they are not installed
by default.

Ubuntu and Debian
apt is a tool to install prebuilt packages on Debian Linux and Ubuntu Linux distributions
and derivatives.

To install the curl command-line tool, you usually just

apt install curl

. . . and that then makes sure the dependencies are installed and usually libcurl is then
also installed as an individual package.

If you want to build applications against libcurl, you need a development package installed
to get the include headers and some additional documentation, etc. You can then select a
libcurl with the TLS backend you prefer:

apt install libcurl4-openssl-dev

or

apt install libcurl4-gnutls-dev

Redhat and CentOS
With Redhat Linux and CentOS Linux derivatives, you use yum to install packages. Install
the command-line tool with:

yum install curl

You install the libcurl development package (with include files and some docs, etc.) with
this:

yum install libcurl-devel

Fedora
Fedora Workstation and other Fedora based distributions use dnf to install packages.

Install the command-line tool with:

44



IMMUTABLE FEDORA DISTRIBUTIONS 45

dnf install curl

To install the libcurl development package you run:

dnf install libcurl-devel

Immutable Fedora distributions
Distributions such as Silverblue, Kinoite, Sericea, Onyx, . . . use rpm-ostree to install
packages. Remember to restart the system after install.

rpm-ostree install curl

To install the libcurl development package you run:

rpm-ostree install libcurl-devel

nix
Nix is a package manager default to the NixOS distribution, but it can also be used on
any Linux distribution.

In order to install command-line tool:

nix-env -i curl

Arch Linux
curl is located in the core repository of Arch Linux. This means it should be installed
automatically if you follow the normal installation procedure.

If curl is not installed, Arch Linux uses pacman to install packages:

pacman -S curl

SUSE and openSUSE
With SUSE Linux and openSUSE Linux you use zypper to install packages. To install
the curl command-line utility:

zypper install curl

In order to install the libcurl development package you run:

zypper install libcurl-devel

SUSE SLE Micro and openSUSE MicroOS
These versions of SUSE/openSUSE Linux are immutable OSes and have a read only root
file system, to install packages you would use transactional-update instead of zypper.
To install the curl command-line utility:

transactional-update pkg install curl

https://nixos.org/nix/


46 LINUX

And to install the libcurl development package:

transactional-update pkg install libcurl-devel

Gentoo
This package installs the tool, libcurl, headers and pkg-config files etc

emerge net-misc/curl

Void Linux
With Void Linux you use xbps-install to install packages. To install the curl command-
line utility:

xbps-install curl

In order to install the libcurl development package:

xbps-install libcurl-devel



Windows

Windows 10 comes with the curl tool bundled with the operating system since version
1804. If you have an older Windows version or just want to upgrade to the latest version
shipped by the curl project, download the latest official curl release for Windows from
curl.se/windows and install that.

There are several different ways to get curl and libcurl onto your Windows systems:

1. MSYS2
2. vcpkg

47

https://curl.se/windows/


MSYS2

MSYS2 is a popular build system for Windows based on mingw-w64 and includes both
gcc and clang compilers. MSYS2 uses a package manager named pacman (a port from
arch-linux) and has about 2000 precompiled mingw-packages. MSYS2 is designed to
build standalone software: the binaries built with mingw-w64 compilers do not depend on
MSYS2 itself[ˆ1].

Get curl and libcurl on MSYS2
Current information about the mingw-w64-curl package can be found on the msys2 website:
https://packages.msys2.org/base/mingw-w64-curl. Here we can also find installation
instructions for the various available flavors. For example to install the default x64 binary
for curl we run:

pacman -Sy mingw-w64-x86_64-curl

This package contains both the curl command line tool as well as libcurl headers and shared
libraries. The default curl packages are built with the OpenSSL backend and hence depend
on mingw-w64-x86_64-openssl. There are also mingw-w64-x86_64-curl-gnutls and
mingw-w64-x86_64-curl-gnutls packages, refer to the msys2 website for more details.

Just like on Linux, we can use pkg-config to query the flags needed to build against
libcurl. Start msys2 using the mingw64 shell (which automatically sets the path to include
/mingw64) and run:

pkg-config --cflags libcurl
# -IC:/msys64/mingw64/include

pkg-config --libs libcurl
# -LC:/msys64/mingw64/lib -lcurl

The pacman package manager installs precompiled binaries. Next up we explain how to
use pacman to build curl locally, for example to customize the configuration.

Building libcurl on MSYS2
Building packages with pacman is almost just as simple as installing. The entire process
is contained in the PKGBUILD file from the mingw-w64-curl package. We can easily
modify the file to rebuild the package ourselves.

If we start with a clean msys2 installation, we first want to install some build tools, like
autoconf, patch and git. Start the msys2 shell and run:

48

https://www.msys2.org/
https://www.mingw-w64.org/
https://github.com/msys2/MINGW-packages
https://github.com/msys2/MINGW-packages/blob/master/mingw-w64-curl/PKGBUILD
https://packages.msys2.org/base/mingw-w64-curl
https://github.com/msys2/MINGW-packages/blob/master/mingw-w64-curl/PKGBUILD


BUILDING LIBCURL ON MSYS2 49

# Sync the repositories
pacman -Syu

# Install git, autoconf, patch, etc
pacman -S git base-devel

# Install GCC for x86_64
pacman -S mingw-w64-x86_64-toolchain

Now clone the mingw-packages repository and go to the mingw-w64-curl package:

git clone https://github.com/msys2/MINGW-packages
cd MINGW-packages/mingw-w64-curl

This directory contains the PKGBUILD file and patches that are used for building curl.
Have a look at the PKGBUILD file to see what is going on. Now to compile it, we can do:

makepkg-mingw --syncdeps --skippgpcheck

That is it. The --syncdeps parameter automatically checks and prompts to install
dependencies of mingw-w64-curl if these are not yet installed. Once the process is
complete you have 3 new files in the current directory, for example:

• pacman -U mingw-w64-x86_64-curl-7.80.0-1-any.pkg.tar.zst
• pacman -U mingw-w64-x86_64-curl-gnutls-7.80.0-1-any.pkg.tar.zst
• pacman -U mingw-w64-x86_64-curl-winssl-7.80.0-1-any.pkg.tar.zst

Use the pacman -u command to install such a local package file:

pacman -U mingw-w64-x86_64-curl-winssl-7.80.0-1-any.pkg.tar.zst

Have a look at the msys2 docs or join the gitter to learn more about building with pacman
and msys2.

[ˆ1]: Be careful not to confuse the mingw-package mingw-w64-curl with the msys-packages
curl and curl-devel. The latter are part of msys2 environment itself (e.g. to support
pacman downloads), but not suitable for redistribution. To build redistributable software
that does not depend on MSYS2 itself, you always need mingw-w64-... packages and
toolchains.

https://www.msys2.org/docs/package-management/
https://gitter.im/msys2/msys2
https://github.com/msys2/MINGW-packages
https://github.com/msys2/MSYS2-packages


vcpkg

Vcpkg helps you manage C and C++ libraries on Windows, Linux and MacOS.

There is no curl package on vcpkg, only libcurl.

Install libcurl
vcpkg.exe install curl:x64-windows

50

https://github.com/microsoft/vcpkg/


macOS

macOS comes with the curl tool bundled with the operating system for many years. If you
want to upgrade to the latest version shipped by the curl project, we recommend installing
homebrew (a macOS software package manager) and then install the curl package from
them:

brew install curl

Note that when installing curl, brew does not create a curl symlink in the default
homebrew folder, to avoid clashes with the macOS version of curl.

Run the following to make brew curl the default one in your shell:

echo ’export PATH="$(brew --prefix)/opt/curl/bin:$PATH"’ >> ~/.zshrc
source ~/.zshrc

Get libcurl for macOS
When you install curl the tool with homebrew as described above, it also installs libcurl
together with its associated headers.

libcurl is also installed with macOS itself and always present, and if you install the
development environment XCode from Apple, you can use libcurl directly without having
to install anything extra as the curl include files are bundled there.

51

https://brew.sh/


Container

Both docker and podman are containerization tools. The docker image is hosted at
https://hub.docker.com/r/curlimages/curl

You can run the latest version of curl with the following command:

Command for docker:

docker run -it --rm docker.io/curlimages/curl www.example.com

Command for podman:

podman run -it --rm docker.io/curlimages/curl www.example.com

Running curl seamlessly in container
It is possible to make an alias to seamlessly run curl inside a container as if it is a native
application installed on the host OS.

Command to define curl as an alias for your containerization tool in the Bash, ZSH, Fish
shell:

Bash or zsh
Invoke curl with docker:

alias curl=’docker run -it --rm docker.io/curlimages/curl’

Invoke curl with podman:

alias curl=’podman run -it --rm docker.io/curlimages/curl’

Fish
Invoke curl with docker:

alias -s curl=’docker run -it --rm docker.io/curlimages/curl’

Invoke curl with podman:

alias -s curl=’podman run -it --rm docker.io/curlimages/curl’

And simply invoke curl www.example.com to make a request

52

https://hub.docker.com/r/curlimages/curl


RUNNING CURL IN KUBERNETES 53

Running curl in kubernetes
Sometimes it can be useful to troubleshoot k8s networking with curl, just like :

kubectl run -i --tty curl --image=curlimages/curl --restart=Never \
-- "-m 5" www.example.com



Source code

The source code is, of course, the actual engine parts of this project. After all, it is a
software project.

curl and libcurl are written in C.

Hosting and download
You can always find the source code for the latest curl and libcurl release on the official
curl website curl.se. There are also checksums and digital signatures provided to help you
verify that what ends up on your local system when you download the files, are the same
bytes in the same order as were originally uploaded there by the curl team.

If you would rather work directly with the curl source code off the source code repository,
you find all details in the curl GitHub repository.

Clone the code
git clone https://github.com/curl/curl.git

This gets the latest curl code downloaded and unpacked in a directory on your local
system.

• Open Source
• Code layout
• Handling build options
• Code style
• Contributing
• Reporting vulnerabilities
• Website

54

https://curl.se/
https://github.com/curl/curl/


Open Source

What is Open Source
Generally, Open Source software is software that can be freely accessed, used, changed,
and shared (in modified or unmodified form) by anyone. Open Source software is typically
made by many people, and distributed under licenses that comply with the definition.

Free Software is an older and related term that mostly says the same thing for all our
intents and purposes, but we stick to the term Open Source in this document for simplicity.

• License
• Copyright

55



License

curl and libcurl are distributed under an Open Source license known as a MIT license
derivative. It is short, simple and easy to grasp. It follows here in full:

COPYRIGHT AND PERMISSION NOTICE

Copyright © 1996 - 2024, Daniel Stenberg, <daniel@haxx.se>, and many
contributors, see the THANKS file.

All rights reserved.

Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF
THIRD PARTY RIGHTS. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall
not be used in advertising or otherwise to promote the sale, use or
other dealings in this Software without prior written authorization of
the copyright holder.

This is legalese that says you are allowed to change the code, redistribute the code,
redistribute binaries built from the code and build proprietary code with it, without
anyone requiring you to give any changes back to the project—but you may not claim
that you wrote it.

Early on in the project we iterated over a few different other licenses before we settled on
this. We started out GPL, then tried MPL and landed on this MIT derivative. We do not
intend to ever change the license again.

56



Copyright

Copyright is a legal right granted by the law of a country that gives the creator of an
original work exclusive rights for its use and distribution.

The copyright owner(s) can agree to allow others to use their work by licensing it. That is
what we do in the curl project. The copyright is the foundation on which the licensing
works.

Daniel Stenberg is the owner of most copyrights in the curl project.

Independent
A lot of Open Source projects are run within umbrella organizations. Such organizations
include the GNU project, the Apache Software Foundation, a larger company that funds
the project or similar. The curl project is not part of any such larger organization but is
completely independent and free.

No company controls curl’s destiny and the curl project does not need to follow any
umbrella organization’s guidelines.

curl is not a formal company, organization or a legal entity of any kind. curl is just
an informal collection of humans, distributed across the globe, who work together on a
software project.

Legal
The curl project obeys national laws of the countries in which it works. However, it is a
highly visible international project, downloadable and usable in effectively every country
on earth, so some local laws could be broken when using curl. That is just the nature of it
and if uncertain, you should check your own local situation.

There have been lawsuits involving technology that curl provides. One such case known to
the author of this was a patent case in the US that insisted they had the rights to resumed
file transfers.

As a generic software component that is usable everywhere to everyone, there are times
when libcurl—in particular—is used in nefarious or downright malicious ways. Examples
include being used in virus and malware software. That is unfortunate but nothing we
can prevent.

57



Code layout

The curl source code tree is neither large nor complicated. A key thing to remember
is that libcurl is the library and that this library is the biggest component of the curl
command-line tool.

root
We try to keep the number of files in the source tree root to a minimum. You might see a
slight difference in files if you check a release archive compared to what is stored in the git
repository as several files are generated by the release scripts.

Some of the more notable ones include:

• buildconf: (deprecated) script used to build configure and more when building curl
from source out of the git repository.

• buildconf.bat: the Windows version of buildconf. Run this after having checked
out the full source code from git.

• CHANGES: generated at release and put into the release archive. It contains the 1000
latest changes to the source repository.

• configure: a generated script that is used on Unix-like systems to generate a setup
when building curl.

• COPYING: the license detailing the rules for your using the code.
• GIT-INFO: only present in git and contains information about how to build curl after

having checked out the code from git.
• maketgz: the script used to produce release archives and daily snapshots
• README: a short summary of what curl and libcurl are.
• RELEASE-NOTES: contains the changes done for the latest release; when found in git

it contains the changes done since the previous release that are destined to end up
in the coming release.

lib
This directory contains the full source code for libcurl. It is the same source code for
all platforms—over one hundred C source files and a few more private header files. The
header files used when building applications against libcurl are not stored in this directory;
see include/curl for those.

Depending on what features are enabled in your own build and what functions your
platform provides, some of the source files or portions of the source files may contain code
that is not used in your particular build.

58



LIB/VTLS 59

lib/vtls
The VTLS sub section within libcurl is the home of all the TLS backends libcurl can be
built to support. The “virtual” TLS internal API is a backend agnostic API used internally
to access TLS and crypto functions without the main code knowing which specific TLS
library is used. This allows the person who builds libcurl to select from a wide variety of
TLS libraries to build with.

We also maintain a SSL comparison table on the website to aid users.

• AmiSSL: an OpenSSL fork made for AmigaOS (uses openssl.c)
• BearSSL
• BoringSSL: an OpenSSL fork maintained by Google. (uses openssl.c)
• GnuTLS
• LibreSSL: an OpenSSL fork maintained by the OpenBSD team. (uses openssl.c)
• mbedTLS
• OpenSSL
• rustls: a TLS library written in rust
• Schannel: the native TLS library on Windows.
• Secure Transport: the native TLS library on macOS
• wolfSSL

src
This directory holds the source code for the curl command-line tool. It is the same source
code for all platforms that run the tool.

Most of what the command-line tool does is to convert given command line options into
the corresponding libcurl options or set of options and then makes sure to issue them
correctly to drive the network transfer according to the user’s wishes.

This code uses libcurl just as any other application would.

include/curl
Here are the public header files that are provided for libcurl-using applications. Some of
them are generated at configure or release time so they do not look identical in the git
repository as they do in a release archive.

With modern libcurl, all an application is expected to include in its C source code is
#include <curl/curl.h>

docs
The main documentation location. Text files in this directory are typically plain text files.
We have slowly started to move towards Markdown format so a few (but growing number
of) files use the .md extension to signify that.

Most of these documents are also shown on the curl website automatically converted from
text to a web friendly format/look.

https://curl.se/docs/ssl-compared.html


60 CODE LAYOUT

• BINDINGS: lists all known libcurl language bindings and where to find them
• BUGS: how to report bugs and where
• CODE_OF_CONDUCT.md: how we expect people to behave in this project
• CONTRIBUTE: what to think about when contributing to the project
• curl.1: the curl command-line tool man page, in nroff format
• curl-config.1: the curl-config man page, in nroff format
• FAQ: frequently asked questions about various curl-related subjects
• FEATURES: an incomplete list of curl features
• HISTORY: describes how the project started and has evolved over the years
• HTTP2.md: how to use HTTP/2 with curl and libcurl
• HTTP-COOKIES: how curl supports and works with HTTP cookies
• index.html: a basic HTML page as a documentation index page
• INSTALL: how to build and install curl and libcurl from source
• INSTALL.cmake: how to build curl and libcurl with CMake
• INSTALL.devcpp: how to build curl and libcurl with devcpp
• INTERNALS: details curl and libcurl internal structures
• KNOWN_BUGS: list of known bugs and problems
• LICENSE-MIXING: describes how to combine different third party modules and their

individual licenses
• MAIL-ETIQUETTE: this is how to communicate on our mailing lists
• MANUAL: a tutorial-like guide on how to use curl
• mk-ca-bundle.1: the mk-ca-bundle tool man page, in nroff format
• README.cmake: CMake details
• README.netware: Netware details
• README.win32: win32 details
• RELEASE-PROCEDURE: how to do a curl and libcurl release
• RESOURCES: further resources for further reading on what, why and how curl does

things
• ROADMAP.md: what we want to work on in the future
• SECURITY: how we work on security vulnerabilities
• SSLCERTS: TLS certificate handling documented
• SSL-PROBLEMS: common SSL problems and their causes
• THANKS: thanks to this extensive list of friendly people, curl exists today.
• TheArtOfHttpScripting: a tutorial into HTTP scripting with curl
• TODO: things we or you can work on implementing
• VERSIONS: how the version numbering of libcurl works

docs/libcurl
All libcurl functions have their own man pages in individual files with .3 extensions, using
nroff format, in this directory. There are also a few other files that are described below.

• ABI
• index.html
• libcurl.3
• libcurl-easy.3
• libcurl-errors.3
• libcurl.m4
• libcurl-multi.3



DOCS/LIBCURL/OPTS 61

• libcurl-share.3
• libcurl-thread.3
• libcurl-tutorial.3
• symbols-in-versions

docs/libcurl/opts
This directory contains the man pages for the individual options for three different libcurl
functions.

curl_easy_setopt() options start with CURLOPT_, curl_multi_setopt() options start
with CURLMOPT_ and curl_easy_getinfo() options start with CURLINFO_.

docs/examples
Contains around 100 stand-alone examples that are meant to help readers understand how
libcurl can be used.

See also the libcurl examples section of this book.

scripts
Handy scripts.

• contributors.sh: extracts all contributors from the git repository since a given
hash/tag. The purpose is to generate a list for the RELEASE-NOTES file and to
allow manually added names to remain in there even on updates. The script uses
the THANKS-filter file to rewrite some names.

• contrithanks.sh: extracts contributors from the git repository since a given
hash/tag, filters out all the names that are already mentioned in THANKS, and
then outputs THANKS to stdout with the list of new contributors appended at the
end; it is meant to allow easier updates of the THANKS document. The script uses
the THANKS-filter file to rewrite some names.

• log2changes.pl: generates the CHANGES file for releases, as used by the release
script. It simply converts git log output.

• zsh.pl: helper script to provide curl command-line completions to users of the zsh
shell.



Handling build options

The curl and libcurl source code has been carefully written to build and run on virtually
every computer platform in existence. This can only be done through hard work and by
adhering to a few guidelines (and, of course, a fair amount of testing).

A golden rule is to always add #ifdefs that checks for specific features, and then have the
setup scripts (configure or CMake or hard-coded) check for the presence of said features
in a user’s computer setup before the program is compiled there. Additionally and as a
bonus, thanks to this way of writing the code, some features can be explicitly turned off
even if they are present in the system and could be used. Examples of that would be when
users want to, for example, build a version of the library with a smaller footprint or with
support for certain protocols disabled, etc.

The project sometimes uses #ifdef protection around entire source files when, for example,
a single file is provided for a specific operating system or perhaps for a specific feature
that is not always present. This is to make it possible for all platforms to always build all
files—it simplifies the build scripts and makefiles a lot. A file entirely #ifdefed out hardly
adds anything to the build time, anyway.

Rather than sprinkling the code with #ifdefs, to the extent where it is possible, we provide
functions and macros that make the code look and work the same, independent of present
features. Some of those are then empty macros for the builds that lack the features.

Both TLS handling and name resolving are handled with an internal API that hides the
specific implementation and choice of 3rd party software library. That way, most of the
internals work the same independent of which TLS library or name resolving system libcurl
is told to use.

62



Code style

Source code that has a common style is easier to read than code that uses different styles
in different places. It helps make the code feel like one continuous code base. Being
easy-to-read is an important property of code and helps make it easier to review when
new things are added and it helps debugging code when developers are trying to figure
out why things go wrong. A unified style is more important than individual contributors
having their own personal tastes satisfied.

Our C code has a few style rules. Most of them are verified and upheld by the checksrc.pl
script. Invoked with make checksrc or even by default by the build system when built
after ./configure --enable-debug has been used.

It is normally not a problem for anyone to follow the guidelines as you just need to copy
the style already used in the source code, and there are no particularly unusual rules in
our set of rules.

We also work hard on writing code that is warning-free on all the major platforms and
in general on as many platforms as possible. Code that obviously causes warnings is not
accepted as-is.

Naming
Try using a non-confusing naming scheme for your new functions and variable names. It
does not necessarily have to mean that you should use the same as in other places of the
code, just that the names should be logical, understandable and be named according to
what they are used for. File-local functions should be made static. We like lower case
names.

All symbols meant for public use must start with curl. Global internal symbols start with
Curl.

Indentation
We use only spaces for indentation, never TABs. We use two spaces for each new open
brace.

if(something_is_true) {
while(second_statement == fine) {

moo();
}

}

63



64 CODE STYLE

Comments
Since we write C89 code, // comments are not allowed. They were not introduced in the
C standard until C99. We use only /* comments */.

/* this is a comment */

Long lines
Source code in curl may never be wider than 79 columns. There are two reasons for
maintaining this even in the modern era of large and high resolution screens:

1. Narrower columns are easier to read than wide ones. There is a reason newspapers
have used columns for decades or centuries.

2. Narrower columns allow developers to more easily view multiple pieces of code next
to each other in different windows. I often have two or three source code windows
next to each other on the same screen, as well as multiple terminal and debugging
windows.

Braces
In if/while/do/for expressions, we write the open brace on the same line as the keyword
and we then set the closing brace on the same indentation level as the initial keyword.
Like this:

if(age < 40) {
/* clearly a youngster */

}

You may omit the braces if they would contain only a one-line statement:

if(!x)
continue;

For functions the opening brace should be on a separate line:

int main(int argc, char **argv)
{

return 1;
}

else on the following line
When adding an else clause to a conditional expression using braces, we add it on a new
line after the closing brace. Like this:

if(age < 40) {
/* clearly a youngster */

}
else {

/* probably intelligent */



NO SPACE BEFORE PARENTHESES 65

}

No space before parentheses
When writing expressions using if/while/do/for, there shall be no space between the
keyword and the open parenthesis. Like this:

while(1) {
/* loop forever */

}

Use boolean conditions
Rather than test a conditional value such as a bool against TRUE or FALSE, a pointer
against NULL or != NULL and an int against zero or not zero in if/while conditions we
prefer:

result = do_something();
if(!result) {

/* something went wrong */
return result;

}

No assignments in conditions
To increase readability and reduce complexity of conditionals, we avoid assigning variables
within if/while conditions. We frown upon this style:

if((ptr = malloc(100)) == NULL)
return NULL;

Instead we encourage the above version to be spelled out more clearly:

ptr = malloc(100);
if(!ptr)

return NULL;

New block on a new line
We never write multiple statements on the same source line, even for short if() conditions.

if(a)
return TRUE;

else if(b)
return FALSE;

Never:

if(a) return TRUE;
else if(b) return FALSE;



66 CODE STYLE

Space around operators
Please use spaces on both sides of operators in C expressions. Postfix (), [], ->, ., ++,
– and Unary +, -, !, ~, & operators excluded they should have no space.

Examples:

bla = func();
who = name[0];
age += 1;
true = !false;
size += -2 + 3 * (a + b);
ptr->member = a++;
struct.field = b--;
ptr = &address;
contents = *pointer;
complement = ~bits;
empty = (!*string) ? TRUE : FALSE;

No parentheses for return values
We use the ‘return’ statement without extra parentheses around the value:

int works(void)
{

return TRUE;
}

Parentheses for sizeof arguments
When using the sizeof operator in code, we prefer it to be written with parentheses around
its argument:

int size = sizeof(int);

Column alignment
Some statements cannot be completed on a single line because the line would be too long,
the statement too hard to read, or due to other style guidelines above. In such a case the
statement spans multiple lines.

If a continuation line is part of an expression or sub-expression then you should align on
the appropriate column so that it is easy to tell what part of the statement it is. Operators
should not start continuation lines. In other cases follow the 2-space indent guideline.
Here are some examples from libcurl:

if(Curl_pipeline_wanted(handle->multi, CURLPIPE_HTTP1) &&
(handle->set.httpversion != CURL_HTTP_VERSION_1_0) &&
(handle->set.httpreq == HTTPREQ_GET ||
handle->set.httpreq == HTTPREQ_HEAD))

/* did not ask for HTTP/1.0 and a GET or HEAD */



PLATFORM DEPENDENT CODE 67

return TRUE;

If no parenthesis, use the default indent:

data->set.http_disable_hostname_check_before_authentication =
(0 != va_arg(param, long)) ? TRUE : FALSE;

Function invoke with an open parenthesis:

if(option) {
result = parse_login_details(option, strlen(option),

(userp ? &user : NULL),
(passwdp ? &passwd : NULL),
NULL);

}

Align with the “current open” parenthesis:

DEBUGF(infof(data, "Curl_pp_readresp_ %d bytes of trailing "
"server response left\n",
(int)clipamount));

Platform dependent code
Use #ifdef HAVE_FEATURE to do conditional code. We avoid checking for particular
operating systems or hardware in the #ifdef lines. The HAVE_FEATURE shall be
generated by the configure script for unix-like systems and they are hard-coded in the
config-[system].h files for the others.

We also encourage use of macros/functions that possibly are empty or defined to constants
when libcurl is built without that feature, to make the code seamless. Like this example
where the magic() function works differently depending on a build-time conditional:

#ifdef HAVE_MAGIC
void magic(int a)
{

return a + 2;
}
#else
#define magic(x) 1
#endif

int content = magic(3);

No typedefed structs
Use structs by all means, but do not typedef them. Use the struct name way of identifying
them:

struct something {
void *valid;
size_t way_to_write;

};



68 CODE STYLE

struct something instance;

Not okay:

typedef struct {
void *wrong;
size_t way_to_write;

} something;
something instance;



Contributing

Contributing means helping out.

When you contribute anything to the project—code, documentation, bug fixes, suggestions
or just good advice—we assume you do this with permission and you are not breaking any
contracts or laws by providing that to us. If you do not have permission, do not contribute
it to us.

Contributing to a project like curl could be many different things. While source code is the
stuff that is needed to build the products, we are also depending on good documentation,
testing (both test code and test infrastructure), web content, user support and more.

Send your changes or suggestions to the team and by working together we can fix problems,
improve functionality, clarify documentation, add features or make anything else you help
out with land in the proper place. We make sure improved code and docs get merged into
the source tree properly and other sorts of contributions are suitable received.

Send your contributions on a mailing list, file an issue or submit a pull request.

Suggestions
Ideas are easy, implementations are hard. Yes, we do appreciate good ideas and suggestions
of what to do and how to do it, but the chances that the ideas actually turn into real
features grow substantially if you also volunteer to participate in converting the idea into
reality.

We already gather ideas in the TODO document and we are generally aware of the current
trends in the popular networking protocols so there is usually no need to remind us about
those.

What to add
The best approach to add anything to curl or libcurl is, of course, to first bring the idea
and suggestion to the curl project team members and then discuss with them if the idea is
feasible for inclusion and then how an implementation is best done—and done in the best
possible way to get merged into the source code repository, assuming that is what you
want.

The project generally approves functions that improve the support for the current protocols,
especially features that popular clients or browsers have but that curl still lacks.

69



70 CONTRIBUTING

Of course, you can also add contents to the project that are not code, like documentation,
graphics or website contents, but the general rules apply equally to that.

If you are fixing a problem you have or a problem that others are reporting, we are thrilled
to receive your fixes and merge them as soon as possible,

What not to add
There are no good rules that say what features you can or cannot add or that we never
accept, but let me instead try to mention a few things you should avoid to get less friction
and to be successful, faster:

• Do not write up a huge patch first and then send it to the list for discussion. Always
start out by discussing on the list, and send your initial review requests early to get
feedback on your design and approach. It saves you from wasting time going down a
route that might need rewriting in the end anyway.

• When introducing things in the code, you need to follow the style and architecture
that already exists. When you add code to the ordinary transfer code path, it must,
for example, work asynchronously in a non-blocking manner. We do not accept new
code that introduces blocking behaviors—we already have too many of those that
we have not managed to remove yet.

• Quick hacks or dirty solutions that have a high risk of not working on platforms
you do not run or on architectures you do not know. We do not care if you are in a
hurry or that it works for you. We do not accept high risk code or code that is hard
to read or understand.

• Code that breaks the build. Sure, we accept that we sometimes have to add code
to certain areas that makes the new functionality perhaps depend on a specific 3rd
party library or a specific operating system and similar, but we can never do that
at the expense of all other systems. We do not break the build, and we make sure
all tests keep running successfully.

git
Our preferred source control tool is git.

While git is sometimes not the easiest tool to learn and master, all the basic steps a casual
developer and contributor needs to know are straight-forward and do not take much time
or effort to learn.

This book does not help you learn git. All software developers in this day and age should
learn git anyway.

The curl git tree can be browsed with a web browser on our GitHub page at https:
//github.com/curl/curl.

To check out the curl source code from git, you can clone it like this:

git clone https://github.com/curl/curl.git

https://git-scm.com/
https://github.com/curl/curl
https://github.com/curl/curl


PULL REQUEST 71

Pull request
A popular and convenient way to make your own changes and contribute them back to
the project is by doing a so-called pull request on GitHub.

First, you create your own version of the source tree, called a fork, on the Github website.
That way you get your own version of the curl git tree that you can clone to a local copy.

You edit your own local copy, commit the changes, push them to the git repository on
Github and then on the Github website you can select to create a pull request based on
your changes done to your local repository clone of the original curl repository.

We recommend doing your work meant for a pull request in a dedicated separate branch
and not in master, just to make it easier for you to update a pull request, like after review,
for example, or if you realize it was a dead end and you decide to just throw it away.

Make a patch for the mailing list
Even if you opt to not make a pull request but prefer the old fashioned and trusted method
of sending a patch to the curl-library mailing list, it is still a good practice to work in a
local git branch and commit your changes there.

A branch makes it easy to edit and rebase when you need to change things and it makes it
easy to keep syncing to the master branch when things are updated upstream.

Once your commits are fine enough to get sent to the mailing list, you just create patches
with git format-patch and send them away. Even more fancy users go directly to git
send-email and have git send the email itself.

git commit style
When you commit a patch to git, you give it a commit message that describes the change
you are committing. We have a certain style in the project that we ask you to use:

[area]: [short line describing the main effect]

[separate the above single line from the rest with an empty line]

[full description, no wider than 72 columns that describes as much as
possible as to why this change is made, and possibly what things
it fixes and everything else that is related]

[Bug: link to source of the report or more related discussion]
[Reported-by: John Doe—credit the reporter]
[whatever-else-by: credit all helpers, finders, doers]

Do not forget to use git commit --author="Jane Doe <jane@example.com>" if you
commit someone else’s work, and make sure that you have your own Github username
and email setup correctly in git before you commit via commands below:

git config --global user.name "johndoe"
git config --global user.email "johndoe@example.com"



72 CONTRIBUTING

The author and the *-by: lines are, of course, there to make sure we give the proper credit
in the project. We do not want to take someone else’s work without clearly attributing
where it comes from. Giving correct credit is of utmost importance.

Who decides what goes in?
First, it might not be obvious to everyone but there is, of course, only a limited set of
people that can actually merge commits into the actual official git repository. Let’s call
them the core team.

Everyone else can fork off their own curl repository to which they can commit and push
changes and host them online and build their own curl versions from and so on, but in
order to get changes into the official repository they need to be pushed by a trusted
person.

The core team is a small set of curl developers who have been around for several years
and have shown they are skilled developers and that they fully comprehend the values
and the style of development we do in this project. They are some of the people listed in
the The development team section.

You can always bring a discussion to the mailing list and argue why you think your changes
should get accepted, or perhaps even object to other changes that are getting in and so
forth. You can even suggest yourself or someone else to be given “push rights” and become
one of the selected few in that team.

Daniel remains the project leader and while it is rarely needed, he has the final say in
debates that do not seem to sway in either direction or fail to reach consensus.



Reporting vulnerabilities

All known and public curl or libcurl related vulnerabilities are listed on the curl website
security page.

Security vulnerabilities should not be entered in the project’s public bug tracker unless
the necessary configuration is in place to limit access to the issue to only the reporter and
the project’s security team.

Vulnerability handling
The typical process for handling a new security vulnerability is as follows.

No information should be made public about a vulnerability until it is formally announced
at the end of this process. That means, for example, that a bug tracker entry must NOT be
created to track the issue since that makes the issue public and it should not be discussed
on any of the project’s public mailing lists. Also messages associated with any commits
should not make any reference to the security nature of the commit if done prior to the
public announcement.

• The person discovering the issue, the reporter, reports the vulnerability on https:
//hackerone.com/curl. Issues filed there reach a handful of selected and trusted
people.

• Messages that do not relate to the reporting or managing of an undisclosed security
vulnerability in curl or libcurl are ignored and no further action is required.

• A person in the security team sends an email to the original reporter to acknowledge
the report.

• The security team investigates the report and either rejects it or accepts it.

• If the report is rejected, the team writes to the reporter to explain why.

• If the report is accepted, the team writes to the reporter to let him/her know it is
accepted and that they are working on a fix.

• The security team discusses the problem, works out a fix, considers the impact of the
problem and suggests a release schedule. This discussion should involve the reporter
as much as possible.

• The release of the information should be as soon as possible and is most often synced
with an upcoming release that contains the fix. If the reporter, or anyone else, thinks
the next planned release is too far away then a separate earlier release for security
reasons should be considered.

73

https://curl.se/docs/security.html
https://curl.se/docs/security.html
https://hackerone.com/curl
https://hackerone.com/curl


74 REPORTING VULNERABILITIES

• Write a security advisory draft about the problem that explains what the problem
is, its impact, which versions it affects, any solutions or workarounds and when the
fix was released, making sure to credit all contributors properly.

• Request a CVE number (Common Vulnerabilities and Exposures) using HackerOne’s
form for this purpose.

• Update the security advisory with the CVE number.

• Consider informing distros@openwall to prepare them about the upcoming public
security vulnerability announcement - attach the advisory draft for information.
Note that ‘distros’ do not accept an embargo longer than 14 days and they do not
care for Windows-specific flaws.

• The security team commits the fix in a private branch. The commit message should
ideally contain the CVE number. This fix is usually also distributed to the ‘distros’
mailing list to allow them to use the fix prior to the public announcement.

• At the day of the next release, the private branch is merged into the master branch
and pushed. Once pushed, the information is accessible to the public and the actual
release should follow suit immediately afterwards.

• The project team creates a release that includes the fix.

• The project team announces the release and the vulnerability to the world in the same
manner we always announce releases—it gets sent to the curl-announce, curl-library
and curl-users mailing lists.

• The security webpage on the website should get the new vulnerability mentioned.

curl-security@haxx.se
Who is on this list? There are a couple of criteria you must meet, and then we might ask
you to join the list or you can ask to join it. It really is not formal. We only require that
you have a long-term presence in the curl project and you have shown an understanding
for the project and its way of working. You must have been around for a good while and
you should have no plans on vanishing in the near future.

We do not make the list of participants public mostly because it tends to vary somewhat
over time and a list somewhere only risks getting outdated.

https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://oss-security.openwall.org/wiki/mailing-lists/distros


Website

Most of the curl website is also available in a public git repository, although separate from
the source code repository since it generally is not interesting to the same people and we
can maintain a different list of people that have push rights, etc.

The website git repository is available on GitHub at this URL: https://github.com/curl/
curl-www and you can clone a copy of the web code like this:

git clone https://github.com/curl/curl-www.git

Building the web
The website is a custom-made setup that mostly builds static HTML files from a set of
source files. The source files are preprocessed with what is a souped-up C preprocessor
called fcpp and a set of perl scripts. The man pages get converted to HTML with roffit.
Make sure fcpp, perl, roffit, make and curl are all in your $PATH.

Once you have cloned the git repository the first time, invoke sh bootstrap.sh once to
get a symlink and some initial local files setup, and then you can build the website locally
by invoking make in the source root tree.

Note that this does not make you a complete website mirror, as some scripts and files are
only available on the real actual site, but should give you enough to let you view most
HTML pages locally.

Run a local clone
The website is built in a way that makes it easy and convenient to host a local copy for
browsing and testing changes before we push them to the official site in production. We
then recommend you call the site curl.local and add that as an entry in your local
/etc/hosts file. Then point the document root of your HTTP server to the curl-www
source code root.

Website infrastructure
• The public curl website is hosted at curl.se.
• The domain name is owned by Daniel Stenberg
• The main origin machine is sponsored by Haxx
• The curl.se domain is served by anycast distributed DNS servers sponsored by Kirei
• The site is delivered to the world via a CDN run by Fastly

75

https://github.com/curl/curl-www
https://github.com/curl/curl-www
https://daniel.haxx.se/projects/fcpp/
https://daniel.haxx.se/projects/roffit/
https://curl.se


76 WEBSITE

• The website updates itself from GitHub every N minutes. The CDN front-ends cache
content for Y minutes (different types cache content different times)



Build curl and libcurl

The source code for this project is written in a way that allows it to be compiled and built
on just about any operating system and platform, with as few restraints and requirements
as possible.

If you have a 32bit (or larger) CPU architecture, if you have a C89 compliant compiler
and if you have roughly a POSIX supporting sockets API, then you can most likely build
curl and libcurl for your target system.

For the most popular platforms, the curl project comes with build systems already done
and prepared to allow you to easily build it yourself.

There are also friendly people and organizations who put together binary packages of curl
and libcurl and make them available for download. The different options are explored
below.

The latest version?
Looking at the curl website, you can see the latest curl and libcurl version released from
the project. That is the latest source code release package you can get.

When you opt for a prebuilt and prepackaged version for your operating system or
distribution of choice, you may not always find the latest version but you might have to
either be satisfied with the latest version someone has packaged for your environment, or
you need to build it yourself from source.

The curl project also provides info about the latest version in a somewhat more machine-
readable format on this URL: https://curl.se/info.

Releases source code
The curl project creates source code that can be built to produce the two products curl
and libcurl. The conversion from source code to binaries is often referred to as “building”.
You build curl and libcurl from source.

The curl project does not provide any built binaries at all — it only ships the source
code. The binaries which can be found on the download page of the curl web and installed
from other places on the Internet are all built and provided to the world by other friendly
people and organizations.

The source code consists of a large number of files containing C code. Generally speaking,
the same set of files are used to build binaries for all platforms and computer architectures

77

https://curl.se


78 BUILD CURL AND LIBCURL

that curl supports. curl can be built and run on a vast number of platforms. If you use a
rare operating system yourself, chances are that building curl from source is the easiest or
perhaps the only way to get curl.

Making it easy to build curl is a priority to the curl project, although we do not always
necessarily succeed.

git vs release tarballs
When release tarballs are created, a few files are generated and included in the final
release bundle. Those generated files are not present in the git repository, because they
are generated and there is no need to store them in git.

Of course, you can also opt to build the latest version that exists in the git repository. It
could however be a bit more fragile and probably requires slightly more attention to detail.

If you build curl from a git checkout, you need to generate some files yourself before you
can build. On Linux and Unix-like systems, do this by running autoreconf -fi and on
Windows, run buildconf.bat.

On Linux and Unix-like systems
There are two distinctly different ways to build curl on Linux and other Unix-like systems;
there is the one using the configure script and there is the CMake approach.

There are two different build environments to cater to people’s different opinions and
tastes. The configure-based build is arguably the more mature and more encompassing
build system and should probably be considered the default one.

On Windows
On Windows there are at least four different ways to build. The above mentioned ways,
the CMake approach and using configure with msys work, but the more popular and
common methods are probably building with Microsoft’s Visual Studio compiler using
either nmake or project files. See the build on windows section.

Learn more
• Autotools - build with configure
• CMake
• Separate install
• On Windows - Windows-specific ways to build
• Dependencies
• TLS libraries

https://github.com/curl/curl


Autotools

The Autotools are a collection of different tools that are used together to generate the
configure script. The configure script is run by the user who wants to build curl and it
does a whole bunch of things:

• It checks for features and functions present in your system.

• It offers command-line options so that you as a builder can decide what to enable
and disable in the build. Features and protocols, etc., can be toggled on/off, even
compiler warning levels and more.

• It offers command-line options to let the builder point to specific installation paths
for various third-party dependencies that curl can be built to use.

• It specifies on which file path the generated installation should be placed when
ultimately the build is made and make install is invoked.

In the most basic usage, just running ./configure in the source directory is enough.
When the script completes, it outputs a summary of what options it has detected/enabled
and what features that are still disabled, some of which possibly because it failed to detect
the presence of necessary third-party dependencies that are needed for those functions to
work. If the summary is not what you expected it to be, invoke configure again with new
options or with the previously used options adjusted.

After configure has completed, you invoke make to build the entire thing and then finally
make install to install curl, libcurl and associated things. make install requires that
you have the correct rights in your system to create and write files in the installation
directory or you get an error displayed.

Cross-compiling
Cross-compiling means that you build the source on one architecture but the output is
created to be run on a different one. For example, you could build the source on a Linux
machine but have the output work on a Windows machine.

For cross-compiling to work, you need a dedicated compiler and build system setup for the
particular target system for which you want to build. How to get and install that system
is not covered in this book.

Once you have a cross compiler, you can instruct configure to use that compiler instead of
the native compiler when it builds curl so that the end result then can be moved over and
used on the other machine.

79



80 AUTOTOOLS

Static linking
By default, configure setups the build files so that the following ‘make’ command creates
both shared and static versions of libcurl. You can change that with the --disable-static
or --disable-shared options to configure.

If you instead want to build with static versions of third party libraries instead of shared
libraries, you need to prepare yourself for an uphill battle. curl’s configure script is focused
on setting up and building with shared libraries.

One of the differences between linking with a static library compared to linking with a
shared one is in how shared libraries handle their own dependencies while static ones do
not. In order to link with library xyz as a shared library, it is basically a matter of adding
-lxyz to the linker command line no matter which other libraries xyz itself was built to
use. But, if that xyz is instead a static library we also need to specify each dependency of
xyz on the linker command line. curl’s configure cannot keep up with or know all possible
dependencies for all the libraries it can be made to build with, so users wanting to build
with static libs mostly need to provide that list of libraries to link with.

Select TLS backend
The configure-based build offers the user to select from a wide variety of different TLS
libraries when building. You select them by using the correct command line options. Before
curl 7.77.0, the configure script would automatically check for OpenSSL, but modern
versions do not.

• AmiSSL: --with-amissl
• AWS-LC: --with-openssl
• BearSSL: --with-bearssl
• BoringSSL: --with-openssl
• GnuTLS: --with-gnutls
• LibreSSL: --with-openssl
• mbedTLS: --with-mbedtls
• OpenSSL: --with-openssl
• Rustls: --with-rustls (point to the rustls-ffi install path)
• Schannel: --with-schannel
• Secure Transport: --with-secure-transport
• wolfSSL: --with-wolfssl

If you do not specify which TLS library to use, the configure script fails. If you want to
build without TLS support, you must explicitly ask for that with --without-ssl.

These --with-* options also allow you to provide the install prefix so that configure
searches for the specific library where you tell it to. Like this:

./configure --with-gnutls=/home/user/custom-gnutls

You can opt to build with support for multiple TLS libraries by specifying multiple
--with-* options on the configure command line. Pick which one to make the default TLS
backend with --with-default-ssl-backend=[NAME]. For example, build with support
for both GnuTLS and OpenSSL and default to OpenSSL:

./configure --with-openssl --with-gnutls \



SELECT SSH BACKEND 81

--with-default-ssl-backend=openssl

Select SSH backend
The configure-based build offers the user to select from a variety of different SSH libraries
when building. You select them by using the correct command-line options.

• libssh2: --with-libssh2
• libssh: --with-libssh
• wolfSSH: --with-wolfssh

These --with-* options also allow you to provide the install prefix so that configure
searches for the specific library where you tell it to. Like this:

./configure --with-libssh2=/home/user/custom-libssh2

Select HTTP/3 backend
The configure-based build offers the user to select different HTTP/3 libraries when building.
You select them by using the correct command-line options.

• quiche: --with-quiche
• ngtcp2: --with-ngtcp2 --with-nghttp3
• msh3: --with-msh3



CMake

CMake is an alternative build method that works on most modern platforms, including
Windows. Using this method you first need to have cmake installed on your build machine,
invoke cmake to generate the build files and then build. With cmake’s -G flag, you select
which build system to generate files for. See cmake --help for the list of “generators”
your cmake installation supports.

On the cmake command line, the first argument specifies where to find the cmake source
files, which is . (a single dot) if in the same directory.

To build on Linux using plain make with CMakeLists.txt in the same directory, you can
do:

cmake -G "Unix Makefiles" .
make

Or rely on the fact that unix makefiles are the default there:

cmake .
make

To create a subdirectory for the build and run make in there:

mkdir build
cd build
cmake ..
make

82



Separate install

At times when you build curl and libcurl from source, you do this with the purpose of
experimenting, testing or perhaps debugging. In these scenarios, you might not be ready
to replace your system wide libcurl installation.

Many modern systems already have libcurl installed in the system, so when you build
and install your test version, you need to make sure that your new build is used for your
purposes.

We get a lot of reports from people who build and install their own version of curl and
libcurl, but when they subsequently invoke their new curl build, the new tool finds an
older libcurl in the system and instead uses that. This tends to confuse users.

Static linking
You can avoid the problem of curl finding an older dynamic libcurl library by instead
linking with libcurl statically. This however instead triggers a slew of other challenges
because linking modern libraries with several third party dependencies statically is hard
work. When you link statically, you need to make sure you provide all the dependencies
to the linker. This is not a method we recommend.

Dynamic linking
When you invoke curl on a modern system, there is a runtime linker (often called ld.so)
that loads the shared libraries the executable was built to use. The shared libraries are
searched for and loaded from a set of paths.

The problem is often that the system libcurl library exists in that path, while your newly
built libcurl does not. Or they both exist in the path but the system one is found first.

The runtime linker path order is typically defined in /etc/ld.so.conf on Linux systems.
You can change the order and you can add new directories to the list of directories to
search. Remember to run ldconfig after an update.

Temporary installs
If you build a libcurl and install it somewhere and you just want to use it for a single
application or maybe just to test something out for a bit, editing and changing the dynamic
library path might be a bit too intrusive.

A normal unix offers a few other alternative takes that we recommend.

83



84 SEPARATE INSTALL

LD_LIBRARY_PATH

You can set this environment variable in your shell to make the runtime linker look in a
particular directory. This affects all executables loaded where this variable is set.

It is convenient for quick checks, or even if you want to rotate around and have your single
curl executable use different libcurls in different invokes.

It can look like this when you have installed your new curl build in $HOME/install:

export LD_LIBRARY_PATH=$HOME/install/lib
$HOME/install/bin/curl https://example.com/

rpath

Often, a better way to forcibly load your separate libcurl instead of the system one, is to
set the rpath of the specific curl executable you build. That gives the runtime linker a
specific path to check for this specific executable.

This is done at link time, and if you build your own libcurl using application, you can
make that load your custom libcurl build like this:

gcc -g example.c -L$HOME/install/lib -lcurl -Wl,-rpath=$HOME/install/lib

With rpath set, the executable linked against $HOME/install/lib/libcurl.so then
makes the runtime linker use that specific path and library, while other binaries in your
system continue to use the system libcurl.

When you want to make your custom build of curl use its own libcurl and you install
them into $HOME/install, then a configure command line for this looks something like
this:

LDFLAGS="-Wl,-rpath,$HOME/install/lib" ./configure ...

If your system supports the runpath form of rpath it is often better to use that instead
because it can be overridden by the LD_LIBRARY_PATH environment variable. It may
also prevent libtool bugs when testing in-tree builds of curl, since then libtool can use
LD_LIBRARY_PATH. Newer linkers may use the runpath form of rpath by default when
rpath is specified but others need an additional linker flag -Wl,--enable-new-dtags like
this:

LDFLAGS="-Wl,-rpath,$HOME/install/lib -Wl,--enable-new-dtags" \
./configure ...



Windows

You can build curl on Windows in several different ways. We recommend using the MSVC
compiler from Microsoft or the free and open source mingw compiler. The build process
is, however, not limited to these.

If you use mingw, you might want to use the autotools build system.

winbuild
This is how to build curl and libcurl using the command line.

Build with MSVC using the nmake utility like this:

cd winbuild

Decide what options to enable/disable in your build. The README.md file in that directory
details them all, but an example command line could look like this (split into several lines
for readability):

nmake WITH_SSL=dll WITH_NGHTTP2=dll ENABLE_IPV6=yes \
WITH_ZLIB=dll MACHINE=x64

Visual C++ project files
curl tarballs ship with pre-generated project files that you can load and build curl with.

Project files are provided for several different Visual C++ versions.

To build with VC++, you need to first install VC++ which is part of Visual Studio.

Once you have VC++ installed you should launch the application and open one of the
solution or workspace files. The VC directory names are based on the version of Visual
C++ that you use. Each version of Visual Studio has a default version of Visual C++.
We offer these versions:

• VC14 (Visual Studio 2015 Version 14.0)
• VC14.10 (Visual Studio 2017 Version 15.0)
• VC14.20 (Visual Studio 2019 Version 16.0)
• VC14.30 (Visual Studio 2022 Version 17.0)

Separate solutions are provided for both libcurl and the curl command line tool as well as
a solution that includes both projects. libcurl.sln, curl.sln and curl-all.sln, respectively.
We recommend using curl-all.sln to build both projects.

85



86 WINDOWS

For example, if you are using Visual Studio 2022 then you should be able to use
VC14.30\curl-all.sln to build curl and libcurl.

Running DLL based configurations
If you are a developer and plan to run the curl tool from Visual Studio (eg you are
debugging) with any third-party libraries (such as OpenSSL, wolfSSL or libSSH2) then
you need to add the search path of these DLLs to the configuration’s PATH environment.
To do that:

1. Open the ‘curl-all.sln’ or ‘curl.sln’ solutions
2. Right-click on the ‘curl’ project and select Properties
3. Navigate to ‘Configuration Properties > Debugging > Environment’
4. Add PATH='Path to DLL';C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem

. . . where ’Path to DLL‘ is the configuration specific path. For example the following
configurations in Visual Studio 2010 might be:

DLL Debug - DLL OpenSSL (Win32):

PATH=C:\openssl\build\Win32\VC10\DLL Debug;C:\Windows\system32;
C:\Windows;C:\Windows\System32\Wbem

DLL Debug - DLL OpenSSL (x64):

PATH=C:\openssl\build\Win64\VC10\DLL Debug;C:\Windows\system32;
C:\Windows;C:\Windows\System32\Wbem

DLL Debug - DLL wolfSSL (Win32):

PATH=C:\wolfssl\build\Win32\VC10\DLL Debug;C:\Windows\system32;
C:\Windows;C:\Windows\System32\Wbem

DLL Debug - DLL wolfSSL (x64):

PATH=C:\wolfssl\build\Win64\VC10\DLL Debug;C:\Windows\system32;
C:\Windows;C:\Windows\System32\Wbem

If you are using a configuration that uses multiple third-party library DLLs (such as DLL
Debug - DLL OpenSSL - DLL LibSSH2) then ’Path to DLL‘ needs to contain the path to
both of these.

Notes
The following keywords have been used in the directory hierarchy:

• <platform> - The platform (For example: Windows)
• <ide> - The IDE (For example: VC10)
• <architecture> - The platform architecture (For example: Win32, Win64)
• <configuration> - The target configuration (For example: DLL Debug, LIB Release

- LIB OpenSSL)

If you are using the source code from the git repository, rather than a release archive or
nightly build, you need to generate the project files. Please run “generate -help” for usage
details.



NOTES 87

Should you wish to help out with some of the items on the TODO list, or find bugs in the
project files that need correcting, and would like to submit updated files back then please
note that, whilst the solution files can be edited directly, the templates for the project
files (which are stored in the git repository) need to be modified rather than the generated
project files that Visual Studio uses.



Dependencies

A key to making good software is to build on top of other great software. By using libraries
that many others use, we reinvent the same things fewer times and we get more reliable
software as there are more people using the same code.

A whole slew of features that curl provides require that it is built to use one or more
external libraries. They are then dependencies of curl. None of them are required, but
most users want to use at least some of them.

HTTP Compression
curl can do automatic decompression of data transferred over HTTP if built with the
proper 3rd party libraries. You can build curl to use one or more of these libraries:

• gzip compression with zlib
• brotli compression with brotli
• zstd compression with libzstd

Getting compressed data over the wire uses less bandwidth, which might also result in
shorter transfer times.

c-ares
https://c-ares.org/

curl can be built with c-ares to be able to do asynchronous name resolution. Another
option to enable asynchronous name resolution is to build curl with the threaded name
resolver backend, which then instead creates a separate helper thread for each name resolve.
c-ares does it all within the same thread.

nghttp2
https://nghttp2.org/

This is a library for handling HTTP/2 framing and is a prerequisite for curl to support
HTTP version 2.

openldap
https://www.openldap.org/

88

https://zlib.net/
https://github.com/google/brotli
https://github.com/facebook/zstd
https://c-ares.org/
https://nghttp2.org/
https://www.openldap.org/


LIBRTMP 89

This library is one option to allow curl to get support for the LDAP and LDAPS URL
schemes. On Windows, you can also opt to build curl to use the winldap library.

librtmp
https://rtmpdump.mplayerhq.hu/

To enable curl’s support for the RTMP URL scheme, you must build curl with the librtmp
library that comes from the RTMPDump project.

libpsl
https://rockdaboot.github.io/libpsl/

When you build curl with support for libpsl, the cookie parser knows about the Public
Suffix List and thus handles such cookies appropriately.

libidn2
https://www.gnu.org/software/libidn/libidn2/manual/libidn2.html

curl handles International Domain Names (IDN) with the help of the libidn2 library.

SSH libraries
If you want curl to have SCP and SFTP support, build with one of these SSH libraries:

• libssh2
• libssh
• wolfSSH

TLS libraries
There are many different TLS libraries to choose from, so they are covered in a separate
section.

QUIC and HTTP/3
To build curl with HTTP/3 support, you need one of these sets:

• ngtcp2 + nghttp3
• quiche (experimental)
• msquic + msh3 (experimental)

https://rtmpdump.mplayerhq.hu/
https://rockdaboot.github.io/libpsl/
https://www.gnu.org/software/libidn/libidn2/manual/libidn2.html
https://libssh2.org/
https://www.libssh.org/
https://www.wolfssl.com/products/wolfssh/
https://github.com/ngtcp2/ngtcp2
https://github.com/ngtcp2/nghttp3
https://github.com/cloudflare/quiche
https://github.com/microsoft/msquic
https://github.com/nibanks/msh3


TLS libraries

To make curl support TLS based protocols, such as HTTPS, FTPS, SMTPS, POP3S,
IMAPS and more, you need to build with a third-party TLS library since curl does not
implement the TLS protocol itself.

curl is written to work with a large number of TLS libraries:

• AmiSSL
• AWS-LC
• BearSSL
• BoringSSL
• GnuTLS
• libressl
• mbedTLS
• OpenSSL
• rustls
• Schannel (native Windows)
• Secure Transport (native macOS)
• WolfSSL

When you build curl and libcurl to use one of these libraries, it is important that you have
the library and its include headers installed on your build machine.

configure
Below, you learn how to tell configure to use the different libraries. The configure script
does not select any TLS library by default. You must select one, or instruct configure that
you want to build without TLS support using --without-ssl.

OpenSSL, BoringSSL, libressl
./configure --with-openssl

configure detects OpenSSL in its default path by default. You can optionally point
configure to a custom install path prefix where it can find OpenSSL:

./configure --with-openssl=/home/user/installed/openssl

The alternatives BoringSSL and libressl look similar enough that configure detects them
the same way as OpenSSL. It then uses additional measures to figure out which of the
particular flavors it is using.

90



CONFIGURE 91

GnuTLS
./configure --with-gnutls

configure detects GnuTLS in its default path by default. You can optionally point configure
to a custom install path prefix where it can find gnutls:

./configure --with-gnutls=/home/user/installed/gnutls

WolfSSL
./configure --with-wolfssl

configure detects WolfSSL in its default path by default. You can optionally point configure
to a custom install path prefix where it can find WolfSSL:

./configure --with-wolfssl=/home/user/installed/wolfssl

mbedTLS
./configure --with-mbedtls

configure detects mbedTLS in its default path by default. You can optionally point
configure to a custom install path prefix where it can find mbedTLS:

./configure --with-mbedtls=/home/user/installed/mbedtls

Secure Transport
./configure --with-secure-transport

configure detects Secure Transport in its default path by default. You can optionally point
configure to a custom install path prefix where it can find Secure Transport:

./configure --with-secure-transport=/home/user/installed/darwinssl

Schannel
./configure --with-schannel

configure detects Schannel in its default path by default.

(WinSSL was previously an alternative name for Schannel, and earlier curl versions instead
needed --with-winssl)

BearSSL
./configure --with-bearssl

configure detects BearSSL in its default path by default. You can optionally point configure
to a custom install path prefix where it can find BearSSL:

./configure --with-bearssl=/home/user/installed/bearssl



92 TLS LIBRARIES

Rustls
./configure --with-rustls

When told to use rustls, curl is actually trying to find and use the rustls-ffi library - the C
API for the rustls library. configure detects rustls-ffi in its default path by default. You
can optionally point configure to a custom install path prefix where it can find rustls-ffi:

./configure --with-rustls=/home/user/installed/rustls-ffi



BoringSSL

build boringssl
$HOME/src is where I put the code in this example. You can pick wherever you like.

$ cd $HOME/src
$ git clone https://boringssl.googlesource.com/boringssl
$ cd boringssl
$ mkdir build
$ cd build
$ cmake -DCMAKE_POSITION_INDEPENDENT_CODE=on ..
$ make

set up the build tree to get detected by curl’s configure
In the boringssl source tree root, make sure there is a lib and an include dir. The
lib directory should contain the two libs (I made them symlinks into the build dir).
The include directory is already present by default. Make and populate lib like this
(commands issued in the source tree root, not in the build/ subdirectory).

$ mkdir lib
$ cd lib
$ ln -s ../build/ssl/libssl.a
$ ln -s ../build/crypto/libcrypto.a

configure curl
LIBS=-lpthread ./configure --with-ssl=$HOME/src/boringssl (where I point out
the root of the boringssl tree)

Verify that at the end of the configuration, it says it detected BoringSSL to be used.

build curl
Run make in the curl source tree.

Now you can install curl normally with make install etc.

93



Command line concepts

curl started out as a command-line tool and it has been invoked from shell prompts and
from within scripts by countless users over the years.

Garbage in gives garbage out
curl has little will of its own. It tries to please you and your wishes to a large extent. It
also means that it tries to play with what you give it. If you misspell an option, it might
do something unintended. If you pass in a slightly illegal URL, chances are curl still deals
with it and proceeds. It means that you can pass in crazy data in some options and you
can have curl pass on that crazy data in its transfer operation.

This is a design choice, as it allows you to really tweak how curl does its protocol
communications and you can have curl massage your server implementations in the most
creative ways.

• Differences
• Command line options
• Options depend on version
• URLs
• URL globbing
• List options
• Config file
• Variables
• Passwords
• Progress meter
• Version
• Persistent connections
• Exit code
• Copy as curl

94



Differences

Binaries and different platforms
The command-line tool curl is a binary executable file. The curl project does not by itself
distribute or provide binaries. Binary files are highly system specific and oftentimes also
bound to specific system versions.

Different curl versions, built by different people on different platforms using different third
party libraries with different built-time options makes the tool offer different features in
different places. In addition, curl is continuously developed, so newer versions of the tool
are likely to have more and better features than the older ones.

Command lines, quotes and aliases
There are many different command line environments, shells and prompts in which curl
can be used. They all come with their own sets of limitations, rules and guidelines to
follow. The curl tool is designed to work with any of them without causing troubles but
there may be times when your specific command line system does not match what others
use or what is otherwise documented.

One way that command-line systems differ, for example, is how you can put quotes around
arguments such as to embed spaces or special symbols. In most Unix-like shells you use
double quotes (") and single quotes (’) depending if you want to allow variable expansions
or not within the quoted string, but on Windows there is no support for the single quote
version.

In some environments, like PowerShell on Windows, the authors of the command line
system decided they know better and “help” the user to use another tool instead of curl
when curl is typed, by providing an alias that takes precedence when a command line is
executed. In order to use curl properly with PowerShell, you need to type in its full name
including the extension: curl.exe or remove the alias.

Different command-line environments have different maximum command line lengths and
force users to limit how large an amount of data is put into a single line. curl adapts to
this by offering a way to provide command-line options through a file or stdin using the
-K option.

95



Command line options

When telling curl to do something, you invoke curl with zero, one or several command-line
options to accompany the URL or set of URLs you want the transfer to be about. curl
supports over two hundred different options.

Short options
Command line options pass on information to curl about how you want it to behave. Like
you can ask curl to switch on verbose mode with the -v option:

curl -v http://example.com

-v is here used as a “short option”. You write those with the minus symbol and a single
letter immediately following it. Many options are just switches that switch something on
or change something between two known states. They can be used with just that option
name. You can then also combine several single-letter options after the minus. To ask for
both verbose mode and that curl follows HTTP redirects:

curl -vL http://example.com

The command-line parser in curl always parses the entire line and you can put the options
anywhere you like; they can also appear after the URL:

curl http://example.com -Lv

and the two separate short options can of course also be specified separately, like:

curl -v -L http://example.com

Long options
Single-letter options are convenient since they are quick to write and use, but as there
are only a limited number of letters in the alphabet and there are many things to control,
not all options are available like that. Long option names are therefore provided for those.
Also, as a convenience and to allow scripts to become more readable, most short options
have longer name aliases.

Long options are always written with two minuses (or dashes, whichever you prefer to
call them) and then the name and you can only write one option name per double-minus.
Asking for verbose mode using the long option format looks like:

curl --verbose http://example.com

and asking for HTTP redirects as well using the long format looks like:

96



ARGUMENTS TO OPTIONS 97

curl --verbose --location http://example.com

Arguments to options
Not all options are just simple boolean flags that enable or disable features. For some
of them you need to pass on data, like perhaps a user name or a path to a file. You do
this by writing first the option and then the argument, separated with a space. Like, for
example, if you want to send an arbitrary string of data in an HTTP POST to a server:

curl -d arbitrary http://example.com

and it works the same way even if you use the long form of the option:

curl --data arbitrary http://example.com

When you use the short options with arguments, you can, in fact, also write the data
without the space separator:

curl -darbitrary http://example.com

Arguments with spaces
At times you want to pass on an argument to an option, and that argument contains one
or more spaces. For example you want to set the user-agent field curl uses to be exactly
I am your father, including those three spaces. Then you need to put quotes around
the string when you pass it to curl on the command line. The exact quotes to use varies
depending on your shell/command prompt, but generally it works with double quotes in
most places:

curl -A "I am your father" http://example.com

Failing to use quotes, like if you would write the command line like this:

curl -A I am your father http://example.com

. . . makes curl only use ‘I’ as a user-agent string, and the following strings, am, your and
father are instead treated as separate URLs since they do not start with - to indicate
that they are options and curl only ever handles options and URLs.

To make the string itself contain double quotes, which is common when you for example
want to send a string of JSON to the server, you may need to use single quotes (except
on Windows, where single quotes do not work the same way). Send the JSON string {
"name": "Darth" }:

curl -d ’{ "name": "Darth" }’ http://example.com

Or if you want to avoid the single quote thing, you may prefer to send the data to curl via
a file, which then does not need the extra quoting. Assuming we call the file ‘json’ that
contains the above mentioned data:

curl -d @json http://example.com



98 COMMAND LINE OPTIONS

Negative options
For options that switch on something, there is also a way to switch it off. You then use
the long form of the option with an initial no- prefix before the name. As an example, to
switch off verbose mode:

curl --no-verbose http://example.com



Options depend on version

curl was first typed on a command line back in the glorious year of 1998. It already then
worked on the specified URL and none, one or more command-line options given to it.

Since then we have added more options. We add options as we go along and almost every
new release of curl has one or a few new options that allow users to modify certain aspects
of its operation.

With the curl project’s rather speedy release chain with a new release shipping every eight
weeks, it is almost inevitable that you are at least not always using the latest released
version of curl. Sometimes you may even use a curl version that is a few years old.

All command-line options described in this book were, of course, added to curl at some
point and only a small portion of them were available that fine spring day in 1998 when
curl first shipped. You may have reason to check your version of curl and crosscheck with
the curl man page for when certain options were added. This is especially important if
you want to take a curl command line using a modern curl version back to an older system
that might be running an older installation.

The developers of curl are working hard to not change existing behavior. Command lines
written to use curl in 1998, 2003 or 2010 should all be possible to run unmodified even
today.

99



URLs

curl is called curl because a substring in its name is URL (Uniform Resource Locator). It
operates on URLs. URL is the name we casually use for the web address strings, like the
ones we usually see prefixed with HTTP:// or starting with www.

URL is, strictly speaking, the former name for these. URI (Uniform Resource Identifier)
is the more modern and correct name for them. The syntax is defined in RFC 3986.

Where curl accepts a “URL” as input, it is then really a “URI”. Most of the protocols
curl understands also have a corresponding URI syntax document that describes how that
particular URI format works.

• Scheme
• Name and password
• Host
• Port number
• Path
• Query
• FTP type
• Fragment
• Browsers
• Many options and URLs
• Connection reuse
• Parallel transfers
• trurl

100

https://www.ietf.org/rfc/rfc3986.txt


Scheme

URLs start with the “scheme”, which is the official name for the http:// part. That tells
which protocol the URL uses. The scheme must be a known one that this version of curl
supports or it shows an error message and stops. Additionally, the scheme must neither
start with nor contain any whitespace.

The scheme separator
The scheme identifier is separated from the rest of the URL by the :// sequence. That is
a colon and two forward slashes. There exists URL formats with only one slash, but curl
does not support any of them. There are two additional notes to be aware of, about the
number of slashes:

curl allows some illegal syntax and tries to correct it internally; so it also understands and
accepts URLs with one or three slashes, even though they are in fact not properly formed
URLs. curl does this because the browsers started this practice so it has led to such URLs
being used in the wild every now and then.

file:// URLs are written as file://<hostname>/<path> but the only hostnames that
are okay to use are localhost, 127.0.0.1 or a blank (nothing at all):

file://localhost/path/to/file
file://127.0.0.1/path/to/file
file:///path/to/file

Inserting any other hostname in there makes recent versions of curl return an error.

Pay special attention to the third example above (file:///path/to/file). That is three
slashes before the path. That is again an area with common mistakes and where browsers
allow users to use the wrong syntax so as a special exception, curl on Windows also allows
this incorrect format:

file://X:/path/to/file

. . . where X is a windows-style drive letter.

Without scheme
As a convenience, curl also allows users to leave out the scheme part from URLs. Then it
guesses which protocol to use based on the first part of the hostname. That guessing is
basic, as it just checks if the first part of the hostname matches one of a set of protocols,
and assumes you meant to use that protocol. This heuristic is based on the fact that

101



102 SCHEME

servers traditionally used to be named like that. The protocols that are detected this way
are FTP, DICT, LDAP, IMAP, SMTP and POP3. Any other hostname in a scheme-less
URL makes curl default to HTTP.

For example, this gets a file from an FTP site:

curl ftp.funet.fi/README

While this gets data from an HTTP server:

curl example.com

You can modify the default protocol to something other than HTTP with the
--proto-default option.

Supported schemes
curl supports or can be made to support (if built so) the following transfer schemes and
protocols:

DICT, FILE, FTP, FTPS, GOPHER, GOPHERS, HTTP, HTTPS, IMAP, IMAPS, LDAP,
LDAPS, MQTT, POP3, POP3S, RTMP, RTMPS, RTSP, SCP, SFTP, SMB, SMBS, SMTP,
SMTPS, TELNET, TFTP, WS and WSS



Name and password

Following the scheme in a URL, there can be a possible user name and password field
embedded. The use of this syntax is usually frowned upon these days since you easily
leak this information in scripts or otherwise. For example, listing the directory of an FTP
server using a given name and password:

curl ftp://user:password@example.com/

The presence of user name and password in the URL is completely optional. curl also
allows that information to be provided with normal command-line options, outside of the
URL.

If you want a non-ASCII letter or maybe a : or @ as part of the user name and/or password,
remember to URL encode that letter: write it as %HH where HH is the hexadecimal byte
value. : is %3a and @ is %40.

103



Host

The hostname part of the URL is, of course, simply a name that can be resolved to a
numerical IP address, or the numerical address itself.

curl http://example.com

When specifying a numerical address, use the dotted version for IPv4 addresses:

curl http://127.0.0.1/

. . . and for IPv6 addresses the numerical version needs to be within square brackets:

curl http://[2a04:4e42::561]/

When a hostname is used, the converting of the name to an IP address is typically done
using the system’s resolver functions. That normally lets a sysadmin provide local name
lookups in the /etc/hosts file (or equivalent).

International Domain Names (IDN)
curl knows how to deal with IDN names and you just pass them on like you would a
normal name:

curl https://räksmörgås.se

104



Port number

Each protocol has a default port number that curl uses, unless a specified port number is
given. The optional port number can be provided within the URL after the hostname part,
as a colon and the port number written in decimal. For example, asking for an HTTP
document on port 8080:

curl http://example.com:8080/

With the name specified as an IPv4 address:

curl http://127.0.0.1:8080/

With the name given as an IPv6 address:

curl http://[fdea::1]:8080/

The port number is an unsigned 16 bit number, so it has to be within the range 0 to 65535.

TCP vs UDP
The given port number is used when setting up the connection to the server specified in
the URL. The port is either a TCP port number or a UDP port number depending on
which actual underlying transport protocol that is used. TCP is the most common one,
but TFTP and HTTP/3 use UDP.

URLs using the file:// scheme cannot have a port number.

105



Path

Every URL contains a path. If there is none given, / is implied. For example when you
use just the hostname like in:

curl https://example.com

The path is sent to the specified server to identify exactly which resource that is requested
or that is provided.

The exact use of the path is protocol dependent. For example, getting the file README
from the default anonymous user from an FTP server:

curl ftp://ftp.example.com/README

For the protocols that have a directory concept, ending the URL with a trailing slash
means that it is a directory and not a file. Thus asking for a directory list from an FTP
server is implied with such a slash:

curl ftp://ftp.example.com/tmp/

If you want a non-ASCII letter or maybe even space () as part of the path field, remember
to “URL-encode” that letter: write it as %HH where HH is the hexadecimal byte value. is
%20.

106



Query

The query part of a URL is the data that is to the right of a question mark (?) but to the
left of the fragment, which begins with a hash (#).

The query can be any string of characters really as long as they are URL encoded. It is a
common practice to use a sequence of key/value pairs separated by ampersands (&). Like
in https://example.com/?name=daniel&tool=curl.

To help users create such query sets, properly encoded, curl offers the command line option
--url-query [content]. This option adds content, usually a name + value pair, to the
end of the query part of the provided URL.

When adding query parts, curl adds ampersand separators.

The syntax is identical to that used --data-urlencode with one extension: the + prefix.
See below.

• content: URL encode the content and add that to the query. Just be careful so
that the content does not contain any = or @ symbols, as that makes the syntax
match one of the other cases below.

• =content: URL encode the content and add that to the query. The initial = symbol
is not included in the data.

• name=content: URL encode the content part and add that to the query. Note that
the name part is expected to be URL encoded already.

• @filename: load data from the given file (including any newlines), URL encode that
data and that to the query.

• name@filename: load data from the given file (including any newlines), URL encode
that data and add it to the query. The name part gets an equal sign appended,
resulting in name=urlencoded-file-content. Note that the name is expected to
be URL encoded already.

• +content: Add the content to the query without doing any encoding.

107



FTP type

This is not a feature that is widely used.

URLs that identify files on FTP servers have a special feature that allows you to also tell
the client (curl in this case) which file type the resource is. This is because FTP is a little
special and can change mode for a transfer and thus handle the file differently than if it
would use another mode.

You tell curl that the FTP resource is an ASCII type by appending ;type=A to the URL.
Getting the foo file from the root directory of example.com using ASCII could then be
made with:

curl "ftp://example.com/foo;type=A"

And while curl defaults to binary transfers for FTP, the URL format allows you to also
specify the binary type with type=I:

curl "ftp://example.com/foo;type=I"

Finally, you can tell curl that the identified resource is a directory if the type you pass is
D:

curl "ftp://example.com/foo;type=D"

. . . this can then work as an alternative format, instead of ending the path with a trailing
slash as mentioned above.

108



Fragment

URLs offer a fragment part. That is usually seen as a hash symbol (#) and a name for a
specific name within a webpage in browsers. An example of such a URL might look like:

https://www.example.com/info.html#the-plot

curl supports fragments fine when a URL is passed to it, but the fragment part is never
actually sent over the wire so it does not make a difference to curl’s operations whether it
is present or not.

If you want to make the # character as part of the path and not separating the fragment,
make sure to pass it URL-encoded, as %23:

curl https://www.example.com/info.html%23the-plot

A fragment trick
The fact that the fragment part is not actually used over the network can be taken
advantage of when you craft command lines.

For example, if you want to request the same URL from a server 10 times, you can make
a loop and put the loop instruction in the fragment part. Like this:

curl https://example.com/#[1-10]

109



Browsers

Browsers typically support and use a different URL standard than what curl uses. Where
curl uses RFC 3986 for guidance, the browsers use the WHATWG URL Specification.

This is important because the two URL standards are not the same. They are not
completely compatible, even though in most daily use those differences rarely show.
Sometimes, a URL interpreted according to one of the specs will be handled differently
when interpreted by the other spec. As such, curl and browsers are not always treating
URLs the same way.

The WHATWG spec is also changing over time.

Since curl is developed to be able to do the same operations a browser can, the curl URL
parser has been slightly adjusted to cater for some of the differences. For example it
accepts spaces in the URL when read off incoming HTTP headers and it accepts either
one, two or three slashes as separator between the scheme and the hostname. That is why
we sometimes say that curl’s parser is RFC 3986+ compliant.

curl strives hard to not break existing behavior, which makes it still support the URLs
and the URL format it supported back in 1998. The browsers do not.

Browsers’ address bar
When you use a modern web browser, the address bar they tend to feature at the top of
their main windows are not using URLs or even URIs. They are in fact mostly using IRIs,
which is a superset of URIs to allow internationalization like non-Latin symbols and more,
but it usually goes beyond that, too, as they tend to, for example, handle spaces and do
magic things on percent encoding in ways none of these mentioned specifications say a
client should do.

The address bar is quite simply an interface for humans to enter and see URI-like strings.

Sometimes the differences between what you see in a browser’s address bar and what you
can pass in to curl is significant.

110

https://url.spec.whatwg.org/


Many options and URLs

As mentioned above, curl supports hundreds of command-line options and it also supports
an unlimited number of URLs. If your shell or command-line system supports it, there is
really no limit to how long a command line you can pass to curl.

curl parses the entire command line first, apply the wishes from the command-line options
used, and then go over the URLs one by one (in a left to right order) to perform the
operations.

For some options (for example -o or -O that tell curl where to store the transfer), you
may want to specify one option for each URL on the command line.

curl returns an exit code for its operation on the last URL used. If you instead rather want
curl to exit with an error on the first URL in the set that fails, use the --fail-early
option.

One output for each given URL
If you use a command-line with two URLs, you must tell curl how to handle both of them.
The -o and -O options instruct curl how to save the output for one URL of the URLs, so
you might want to have as many of those options as you have URLs on the command line.

If you have more URLs than output options on the command line, the URL content
without a corresponding output instruction then instead gets sent to stdout.

Using the --remote-name-all flag automatically makes curl act as if -O was used for all
given URLs that do not have any output option.

Separate options per URL
In previous sections we described how curl always parses all options in the whole command
line and applies those to all the URLs that it transfers.

That was a simplification: curl also offers an option (-:, --next) that inserts a boundary
between a set of options and URLs for which it applies the options. When the command-
line parser finds a --next option, it applies the following options to the next set of URLs.
The --next option thus works as a divider between a set of options and URLs. You can
use as many --next options as you please.

As an example, we do an HTTP GET to a URL and follow redirects, we then make a
second HTTP POST to a different URL and we round it up with a HEAD request to a
third URL. All in a single command line:

111



112 MANY OPTIONS AND URLS

curl --location http://example.com/1 --next
--data sendthis http://example.com/2 --next
--head http://example.com/3

Trying something like that without the --next options on the command line would generate
an illegal command line since curl would attempt to combine both a POST and a HEAD:

Warning: You can only select one HTTP request method! You asked for both
Warning: POST (-d, --data) and HEAD (-I, --head).



Connection reuse

Setting up a TCP connection and especially a TLS connection can be a slow process, even
on high bandwidth networks.

It can be useful to remember that curl has a connection pool internally which keeps
previously used connections alive and around for a while after they were used so that
subsequent requests to the same hosts can reuse an already established connection.

Of course, they can only be kept alive for as long as the curl tool is running. It is a good
reason for trying to get several transfers done within the same command line instead of
running several independent curl command line invocations.

113



Parallel transfers

The default behavior of getting the specified URLs one by one in a serial fashion makes it
easy to understand exactly when each URL is fetched but it can be slow.

curl offers the -Z (or --parallel) option that instead instructs curl to attempt to do
the specified transfers in a parallel fashion. When this is enabled, curl performs a lot of
transfers simultaneously instead of serially. It does up to 50 transfers at the same time by
default and as soon as one of them completes, the next one is kicked off.

For cases where you want to download many files from different sources and a few of them
might be slow, a few fast, this can speed things up tremendously.

If 50 parallel transfers is wrong for you, the --parallel-max option is there to allow you
to change that amount.

Parallel transfer progress meter
Naturally, the ordinary progress meter display that shows file transfer progress for a single
transfer is not that useful for parallel transfers so when curl performs parallel transfers, it
shows a different progress meter that displays information about all the current ongoing
transfers in a single line.

Connection before multiplex
When curl is asked to do parallel transfers, it prioritizes to have the additional transfer
reuse and multiplex over other already existing connections. This can potentially lower
the total amount of connections (and thereby resources) necessary but it might be slightly
slower at start-up.

With --parallel-immediate, curl is instructed to reverse the prioritization and instead
prefer creating a new connection immediately rather than risk waiting a little to see if the
transfer can be multiplexed of another connection.

114



trurl

In the spring of 2023, the curl project created this new tool with the sole purpose of
parsing, manipulating and outputting URLs and parts of URLs. To work as a companion
tool to curl for your command lines and scripting needs.

trurl is built to use libcurl’s URL parser. This ensures that curl and trurl always have the
same opinion about URLs and that both tools parse them identically and consistently.

Usage
Typically you pass in one or more URLs to trurl and decide what of that you want output.
Possibly modifying the URL as well.

trurl knows URLs and every URL consists of up to ten separate and independent compo-
nents. These components can be extracted, removed and updated with trurl.

trurl example command lines
Replace the hostname of a URL:

$ trurl --url https://curl.se --set host=example.com
https://example.com/

Create a URL by setting components:

$ trurl --set host=example.com --set scheme=ftp
ftp://example.com/

Redirect a URL:

$ trurl --url https://curl.se/we/are.html --redirect here.html
https://curl.se/we/here.html

Change port number:

$ trurl --url https://curl.se/we/../are.html --set port=8080
https://curl.se:8080/are.html

Extract the path from a URL:

$ trurl --url https://curl.se/we/are.html --get ’{path}’
/we/are.html

Extract the port from a URL:

115



116 TRURL

$ trurl --url https://curl.se/we/are.html --get ’{port}’
443

Append a path segment to a URL:

$ trurl --url https://curl.se/hello --append path=you
https://curl.se/hello/you

Append a query segment to a URL:

$ trurl --url "https://curl.se?name=hello" --append query=search=string
https://curl.se/?name=hello&search=string

Read URLs from stdin:

$ cat urllist.txt | trurl --url-file -
...

Output JSON:

$ trurl "https://fake.host/hello#frag" --set user=::moo:: --json
[

{
"url": "https://%3a%3amoo%3a%3a@fake.host/hello#frag",
"parts": {

"scheme": "https",
"user": "::moo::",
"host": "fake.host",
"path": "/hello",
"fragment": "frag"

}
}

]

Remove tracking tuples from query:

$ trurl "https://curl.se?search=hey&utm_source=tracker" \
--trim query="utm_*"

https://curl.se/?search=hey

Show a specific query key value:

$ trurl "https://example.com?a=home&here=now&thisthen" -g ’{query:a}’
home

Sort the key/value pairs in the query component:

$ trurl "https://example.com?b=a&c=b&a=c" --sort-query
https://example.com?a=c&b=a&c=b

Work with a query that uses a semicolon separator:

$ trurl "https://curl.se?search=fool;page=5" --trim query="search" \
--query-separator ";"

https://curl.se?page=5

Accept spaces in the URL path:



MORE 117

$ trurl "https://curl.se/this has space/index.html" --accept-space
https://curl.se/this%20has%20space/index.html

More
Everything you want to know about trurl is found at https://curl.se/trurl. It is probably
already available for your Linux distribution of choice.

https://curl.se/trurl


URL globbing

At times you want to get a range of URLs that are mostly the same, with only a small
portion of it changing between the requests. Maybe it is a numeric range or maybe a set
of names. curl offers “globbing” as a way to specify many URLs like that easily.

The globbing uses the reserved symbols [] and {} for this, symbols that normally cannot
be part of a legal URL (except for numerical IPv6 addresses but curl handles them fine
anyway). If the globbing gets in your way, disable it with -g, --globoff.

When using [] or {} sequences when invoked from a command line prompt, you probably
have to put the full URL within double quotes to avoid the shell from interfering with it.
This also goes for other characters treated special, like for example ‘&’, ‘?’ and ’*’.

While most transfer related functionality in curl is provided by the libcurl library, the
URL globbing feature is not.

Numerical ranges
You can ask for a numerical range with [N-M] syntax, where N is the start index and it
goes up to and including M. For example, you can ask for 100 images one by one that are
named numerically:

curl -O "http://example.com/[1-100].png"

and it can even do the ranges with zero prefixes, like if the number is three digits all the
time:

curl -O "http://example.com/[001-100].png"

Or maybe you only want even-numbered images so you tell curl a step counter too. This
example range goes from 0 to 100 with an increment of 2:

curl -O "http://example.com/[0-100:2].png"

Alphabetical ranges
curl can also do alphabetical ranges, like when a site has sections named a to z:

curl -O "http://example.com/section[a-z].html"

118



LIST 119

List
Sometimes the parts do not follow such an easy pattern, and then you can instead give
the full list yourself but then within the curly braces instead of the brackets used for the
ranges:

curl -O "http://example.com/{one,two,three,alpha,beta}.html"

Combinations
You can use several globs in the same URL which then makes curl iterate over those, too.
To download the images of Ben, Alice and Frank, in both the resolutions 100 x 100 and
1000 x 1000, a command line could look like:

curl -O "http://example.com/{Ben,Alice,Frank}-{100x100,1000x1000}.jpg"

Or download all the images of a chess board, indexed by two coordinates ranged 0 to 7:

curl -O "http://example.com/chess-[0-7]x[0-7].jpg"

And you can, of course, mix ranges and series. Get a week’s worth of logs for both the
web server and the mail server:

curl -O "http://example.com/{web,mail}-log[0-6].txt"

Output variables for globbing
In all the globbing examples previously in this chapter we have selected to use the -O /
--remote-name option, which makes curl save the target file using the filename part of
the used URL.

Sometimes that is not enough. You are downloading multiple files and maybe you want
to save them in a different subdirectory or create the saved filenames differently. curl, of
course, has a solution for these situations as well: output filename variables.

Each “glob” used in a URL gets a separate variable. They are referenced as #[num] - that
means the single character # followed by the glob number which starts with 1 for the first
glob and ends with the last glob.

Save the main pages of two different sites:

curl "http://{one,two}.example.com" -o "file_#1.txt"

Save the outputs from a command line with two globs in a subdirectory:

curl "http://{site,host}.host[1-5].example.com" -o "subdir/#1_#2"

Using []{} in URLs
When the globbing concept was introduced in curl in the 1990s, we all used the same
Internet standard for how the URL syntax was defined, and in this standard these four
symbols are documented as reserved. You should URL-encode them in the URL if you
wanted to use them (%HH style). Those symbols were therefore not used in URLs and were
downright attractive to use for globbing purposes.



120 URL GLOBBING

Later on, the URL syntax has gradually been relaxed and changed and these days every
now and then we see URLs used where one of the four symbols []{} are used as-is, as in
not encoded. Passing such a URL to curl causes it to spew out syntax errors when the
glob parser goes crazy.

To work around that problem, you have two separate options. You either encode the
symbols yourself, or you switch off globbing.

Encode the symbols like this:

symbol encoding
[ %5b
] %5d
{ %7b
} %7d

Or switch off globbing with -g or --globoff.



List options

curl has more than two hundred and fifty command-line options and the number of options
keep increasing over time. Chances are the number of options reaches or even surpasses
three hundred in the coming years.

To find out which options you need to perform a certain action, you can get curl to list
them. First, curl --help or simply curl -h get you a list of the most important and
frequently used options. You can then provide an additional “category” to -h to get more
options listed for that specific area. Use curl -h category to list all existing categories
or curl -h all to list all available options.

The curl --manual option outputs the entire man page for curl. That is a thorough
and complete document on how each option works amassing several thousand lines of
documentation. To wade through that is also a tedious work and we encourage use of a
search function through those text masses. Some people might also appreciate the man
page in its web version.

121

https://curl.se/docs/manpage.html


Config file

Curl commands with multiple command-line options can become cumbersome to work
with. The number of characters can even exceed the maximum length allowed by your
terminal application.

To aid such situations, curl allows you to write command-line options in a plain text config
file and tell curl to read options from that file when applicable.

You can also use config files to assign data to variables and transform the data with
functions, making them incredibly useful. This is discussed in the “Variables” section.

Some examples below contain multiple lines for readability. The forward slash (\) is used
to instruct the terminal to ignore the newline.

Specify the config file to use
Using the -K or long form --config option tells curl to read from a config file.

curl \
--config configFile.txt \
--url https://example.com

The file path specified is relative to the current directory in your terminal.

You can name the config file whatever you like. configFile.txt is used for simplicity in
the example above.

Syntax
Enter one command per line. Use a hash symbol for comments:

# curl config file

# Follow redirects
--location

# Do a HEAD request
--head

122

https://everything.curl.dev/cmdline/variables


COMMAND LINE OPTIONS 123

Command line options
You can use both short and long options, exactly as you would write them on a command
line.

You can also write the long option WITHOUT the leading two dashes to make it easier to
read.

# curl config file

# Follow redirects
location

# Do a HEAD request
head

Arguments
A command line option that takes an argument must have its argument provided on the
SAME LINE as the option.

# curl config file

user-agent "Everything-is-an-agent"

You can also use = or : between the option and its argument. As you see above, it is not
necessary, but some like the clarity it offers. Setting the user-agent option again:

# curl config file

user-agent = "Everything-is-an-agent"

The user agent string example we have used above has no white spaces, so the quotes are
technically not needed:

# curl config file

user-agent = Everything-is-an-agent

See “When to use quotes” below for more info on when quotes should be used.

URLs
When entering URLs at the command line, everything that is not an option is assumed to
be a URL. However, in a config file, you must specify a URL with --url or url.

# curl config file

url = https://example.com



124 CONFIG FILE

When to use quotes
You need to use double quotes when:

• the parameter contains white space, or starts with the characters : or =.
• you need to use escape sequences (available options: \\, \", \t, \n, \r and \v. A

backslash preceding any other letter is ignored).

If a parameter containing white space is not enclosed in double quotes, curl considers the
next space or newline as the end of the argument.

Default config file
When curl is invoked, it always (unless -q is used), checks for a default config file and uses
it if found.

Curl looks for the default config file in the following locations, in this order:

1) $CURL_HOME/.curlrc

2) $XDG_CONFIG_HOME/.curlrc (Added in 7.73.0)

3) $HOME/.curlrc

4) Windows: %USERPROFILE%\\.curlrc

5) Windows: %APPDATA%\\.curlrc

6) Windows: %USERPROFILE%\\Application Data\\.curlrc

7) Non-Windows: use getpwuid to find the home directory

8) On Windows, if it finds no .curlrc file in the sequence described above, it checks
for one in the same directory the curl executable is placed.

On Windows two filenames are checked per location: .curlrc and _curlrc, preferring
the former. Ancient curl versions on Windows checked for _curlrc only.



Variables

This concept of variables for the command line and config files was added in curl 8.3.0.

A user sets a variable to a plain string with --variable varName=content or from the
contents of a file with --variable varName@file where the file can be stdin if set to a
single dash (-).

A variable in this context is given a specific name and it holds contents. Any number of
variables can be set. If you set the same variable name again, it gets overwritten with
new content. Variable names are case sensitive, can be up to 128 characters long and may
consist of the characters a-z, A-Z, 0-9 and underscore.

Some examples below contain multiple lines for readability. The forward slash (\) is used
to instruct the terminal to ignore the newline.

Setting variables
You can set variables at the command line with --variable or in config files with variable
(no dashes):

curl --variable varName=content

or in a config file:

# Curl config file

variable varName=content

Assigning contents from file
You can assign the contents of a plain text file to a variable, too:

curl --variable varName@filename

Expand
Variables can be expanded in option parameters using {{varName}} when the option name
is prefixed with --expand-. This makes the content of the variable varName get inserted.

If you reference a name that does not exist as a variable, a blank string is inserted.

Insert {{ verbatim in the string by escaping it with a backslash:

125



126 VARIABLES

\{{.

In the example below, the variable host is set and then expanded:

curl \
--variable host=example \
--expand-url "https://{{host}}.com"

For options specified without the --expand- prefix, variables are not expanded.

Variable content holding null bytes that are not encoded when expanded causes curl to
exit with an error.

Environment variables
Import an environment variable with --variable %VARNAME. This import makes curl exit
with an error if the given environment variable is not set. A user can also opt to set
a default value if the environment variable does not exist, using =content or @file as
described above.

As an example, assign the %USER environment variable to a curl variable and insert it
into a URL. Because no default value is specified, this operation fails if the environment
variable does not exist:

curl \
--variable %USER \
--expand-url "https://example.com/api/{{USER}}/method"

Instead, let’s use dummy as a default value if %USER does not exist:

curl \
--variable %USER=dummy \
--expand-url "https://example.com/api/{{USER}}/method"

Expand --variable

The --variable option itself can also be expanded, which allows you to assign variables
to the contents of other variables.

curl \
--expand-variable var1={{var2}} \
--expand-variable fullname=’Mrs {{first}} {{last}}’ \
--expand-variable source@{{filename}}

Or done in a config file:

# Curl config file

variable host=example

expand-variable url=https://{{host}}.com

expand-variable source@{{filename}}



FUNCTIONS 127

Functions
When expanding variables, curl offers a set of functions to change how they are ex-
panded. Functions are applied with colon + function name after the variable, like this:
{{varName:function}}.

Multiple functions can be applied to the variable. They are then applied in a left-to-right
order: {{varName:func1:func2:func3}}

These functions are available: trim, json, url and b64

Function: trim

Expands the variable without leading and trailing white space. White space is defined as:

• horizontal tabs
• spaces
• new lines
• vertical tabs
• form feed and carriage returns

This is extra useful when reading data from files.

--expand-url “https://example.com/{{path:trim}}”

Function: json

Expands the variable as a valid JSON string. This makes it easier to insert valid JSON
into an argument (The quotes are not included in the resulting JSON).

--expand-json "\"full name\": \"{{first:json}} {{last:json}}\""

To trim the variable first, apply both functions (in this order):

--expand-json "\"full name\": \"{{varName:trim:json}}\""

Function: url

Expands the variable URL encoded. Also known as percent encoded. This function ensures
that all output characters are legal within a URL and the rest are encoded as %HH where
HH is a two-digit hexadecimal number for the ascii value.

--expand-data “varName={{varName:url}}”

To trim the variable first, apply both functions (in this order):

--expand-data “varName={{varName:trim:url}}”

Function: b64

Expands the variable base64 encoded. Base64 is an encoding for binary data that only
uses 64 specific characters.



128 VARIABLES

--expand-data “content={{value:b64}}”

To trim the variable first, apply both functions (in this order):

--expand-data “content={{value:trim:b64}}”

Example: get the contents of a file called $HOME/.secret into a variable called fix. Make
sure that the content is trimmed and percent-encoded sent as POST data:

curl \
--variable %HOME=/home/default \
--expand-variable fix@{{HOME}}/.secret \
--expand-data "{{fix:trim:url}}" \
--url https://example.com/ \



Passwords

Passwords are tricky and sensitive. Leaking a password can make someone other than you
access the resources and the data otherwise protected.

curl offers several ways to receive passwords from the user and then subsequently pass
them on or use them to something else.

The most basic curl authentication option is -u / --user. It accepts an argument that is
the user name and password, colon separated. Like when alice wants to request a page
requiring HTTP authentication and her password is 12345:

$ curl -u alice:12345 http://example.com/

Command line leakage
Several potentially bad things are going on here. First, we are entering a password on
the command line and the command line might be readable for other users on the same
system (assuming you have a multi-user system). curl helps minimize that risk by trying
to blank out passwords from process listings.

One way to avoid passing the user name and password on the command line is to instead
use a .netrc file or a config file. You can also use the -u option without specifying the
password, and then curl instead prompts the user for it when it runs.

Network leakage
Secondly, this command line sends the user credentials to an HTTP server, which is a
clear-text protocol that is open for man-in-the-middle or other snoopers to spy on the
connection and see what is sent. In this command line example, it makes curl use HTTP
Basic authentication and that is completely insecure.

There are several ways to avoid this, and the key is, of course, then to avoid protocols
or authentication schemes that send credentials in plain text over the network. Easiest
is perhaps to make sure you use encrypted versions of protocols. Use HTTPS instead of
HTTP, use FTPS instead of FTP and so on.

If you need to stick to a plain text and insecure protocol, then see if you can switch to
using an authentication method that avoids sending the credentials in the clear. If you
want HTTP, such methods would include Digest (--digest), Negotiate (--negotiate.)
and NTLM (--ntlm).

129



Progress meter

curl has a built-in progress meter. When curl is invoked to transfer data (either uploading
or downloading) it can show that meter in the terminal screen to show how the transfer is
progressing, namely the current transfer speed, how long it has been going on and how
long it thinks it might be left until completion.

The progress meter is inhibited if curl deems that there is output going to the terminal, as
the progress meter would interfere with that output and just mess up what gets displayed.
A user can also forcibly switch off the progress meter with the -s / --silent option,
which tells curl to hush.

If you invoke curl and do not get the progress meter, make sure your output is directed
somewhere other than the terminal.

curl also features an alternative and simpler progress meter that you enable with -# /
--progress-bar. As the long name implies, it instead shows the transfer as a progress
bar.

At times when curl is asked to transfer data, it cannot figure out the total size of the
requested operation and that then subsequently makes the progress meter contain fewer
details and it cannot, for example, make forecasts for transfer times, etc.

Units
The progress meter displays bytes and bytes per second.

It also uses suffixes for larger amounts of bytes, using the 1024 base system so 1024 is one
kilobyte (1K), 2048 is 2K, etc. curl supports these:

Suffix Amount Name
K 2ˆ10 kilobyte
M 2ˆ20 megabyte
G 2ˆ30 gigabyte
T 2ˆ40 terabyte
P 2ˆ50 petabyte

The times are displayed using H:MM:SS for hours, minutes and seconds.

130



PROGRESS METER LEGEND 131

Progress meter legend
The progress meter exists to show a user that something actually is happening. The
different fields in the output have the following meaning:

% Total % Received % Xferd Average Speed Time Curr.
Dload Upload Total Current Left Speed

0 151M 0 38608 0 0 9406 0 4:41:43 0:00:04 4:41:39 9287

From left to right:

Title Meaning
% Percentage completed of the whole transfer
Total Total size of the whole expected transfer (if known)
% Percentage completed of the download
Received Currently downloaded number of bytes
% Percentage completed of the upload
Xferd Currently uploaded number of bytes
Average
Speed
Dload

Average transfer speed of the entire download so far, in number of bytes
per second

Average
Speed
Upload

Average transfer speed of the entire upload so far, in number of bytes per
second

Time
Total

Expected time to complete the operation, in HH:MM:SS notation for
hours, minutes and seconds

Time
Current

Time passed since the start of the transfer, in HH:MM:SS notation for
hours, minutes and seconds

Time Left Expected time left to completion, in HH:MM:SS notation for hours,
minutes and seconds

Curr.
Speed

Average transfer speed over the last 5 seconds (the first 5 seconds of a
transfer is based on less time, of course) in number of bytes per second



Version

To get to know what version of curl you have installed, run

curl --version

or use the shorthand version:

curl -V

The output from that command line is typically four lines, out of which some are rather
long and might wrap in your terminal window.

An example output from a Debian Linux in June 2020:

curl 7.68.0 (x86_64-pc-linux-gnu) libcurl/7.68.0 OpenSSL/1.1.1g
zlib/1.2.11 brotli/1.0.7 libidn2/2.3.0 libpsl/0.21.0 (+libidn2/2.3.0)
libssh2/1.8.0 nghttp2/1.41.0 librtmp/2.3
Release-Date: 2020-01-08
Protocols: dict file ftp ftps gopher http https imap imaps ldap ldaps pop3
pop3s rtmp rtsp scp sftp smb smbs smtp smtps telnet tftp
Features: AsynchDNS brotli GSS-API HTTP2 HTTPS-proxy IDN IPv6 Kerberos
Largefile libz NTLM NTLM_WB PSL SPNEGO SSL TLS-SRP UnixSockets

while the same command line invoked on a Windows 10 machine on the same date looks
like:

curl 7.55.1 (Windows) libcurl/7.55.1 WinSSL
Release-Date: [unreleased]
Protocols: dict file ftp ftps http https imap imaps pop3 pop3s smtp smtps
telnet tftp
Features: AsynchDNS IPv6 Largefile SSPI Kerberos SPNEGO NTLM SSL

The meaning of the four lines?

Line 1: curl
The first line starts with curl and first shows the main version number of the tool. Then
follows the platform the tool was built for within parentheses and the libcurl version.
Those three fields are common for all curl builds.

If the curl version number has -DEV appended to it, it means the version is built straight
from a in-development source code and it is not an officially released and blessed version.

The rest of this line contains names of third party components this build of curl uses,
often with their individual version number next to it with a slash separator. Like

132



LINE 2: RELEASE-DATE 133

OpenSSL/1.1.1g and nghttp2/1.41.0. This can for example tell you which TLS backends
this curl uses.

Line 1: TLS versions
Line 1 may contain one or more TLS libraries. curl can be built to support more than one
TLS library which then makes curl - at start-up - select which particular backend to use
for this invoke.

If curl supports more than one TLS library like this, the ones that are not selected by
default are listed within parentheses. Thus, if you do not specify which backend to use
(with the CURL_SSL_BACKEND environment variable) the one listed without parentheses is
used.

Line 2: Release-Date
This line shows the date this curl version was released by the curl project, and it can also
show a secondary “Patch date” if it has been updated somehow after it was originally
released.

This says [unreleased] if curl was built another way than from a release tarball, and as
you can see above that is how Microsoft did it for Windows 10 and the curl project does
not recommend it.

Line 3: Protocols
This is a list of all transfer protocols (URL schemes really) in alphabetical order that this
curl build supports. All names are shown in lowercase letters.

This list can contain these protocols:

dict, file, ftp, ftps, gopher, http, https, imap, imaps, ldap, ldaps, mqtt, pop3, pop3s, rtmp,
rtsp, scp, sftp, smb, smbs, smtp, smtps, telnet and tftp

Line 4: Features
The list of features this build of curl supports. If the name is present in the list, that
feature is enabled. If the name is not present, that feature is not enabled.

Features that can be present there:

• alt-svc - Support for the alt-svc: header
• AsynchDNS - This curl uses asynchronous name resolves. Asynchronous name

resolves can be done using either the c-ares or the threaded resolver backends.
• brotli - support for automatic brotli compression over HTTP(S)
• CharConv - curl was built with support for character set conversions (like EBCDIC)
• Debug - This curl uses a libcurl built with Debug. This enables more error-tracking

and memory debugging etc. For curl-developers only.
• GSS-API - GSS-API authentication is enabled
• HTTP2 - HTTP/2 support has been built-in.
• HTTP3 - HTTP/3 support has been built-in.



134 VERSION

• HTTPS-proxy - This curl is built to support HTTPS proxy.
• IDN - This curl supports IDN - international domain names.
• IPv6 - You can use IPv6 with this.
• krb4 - Krb4 for FTP is supported
• Largefile - This curl supports transfers of large files, files larger than 2GB.
• libz - Automatic gzip decompression of compressed files over HTTP is supported.
• Metalink - This curl supports Metalink. In modern curl versions this option is

never available.
• MultiSSL - This curl supports multiple TLS backends. The first line details exactly

which TLS libraries.
• NTLM - NTLM authentication is supported.
• NTLM_WB - NTLM authentication is supported.
• PSL - Public Suffix List (PSL) is available and means that this curl has been built

with knowledge about public suffixes, used for cookies.
• SPNEGO - SPNEGO authentication is supported.
• SSL - SSL versions of various protocols are supported, such as HTTPS, FTPS,

POP3S and so on.
• SSPI - SSPI is supported
• TLS-SRP - SRP (Secure Remote Password) authentication is supported for TLS.
• UnixSockets - Unix sockets support is provided.



Persistent connections

When setting up connections to sites, curl keeps old connections around for a while so
that if the next transfer is done using the same host as a previous transfer, it can reuse
the same connection again and thus save a lot of time. We call this persistent connections.
curl always tries to keep connections alive and reuses existing connections as far as it can.

Connections are kept in the connection pool, sometimes also called the connection cache.

The curl command-line tool can, however, only keep connections alive for as long as it
runs, so as soon as it exits back to your command line it has to close down all currently
open connections (and also free and clean up all the other caches it uses to decrease time
of subsequent operations). We call the pool of alive connections the connection cache.

If you want to perform N transfers or operations against the same host or same base URL,
you could gain a lot of speed by trying to do them in as few curl command lines as possible
instead of repeatedly invoking curl with one URL at a time.

135



Exit code

A lot of effort has gone into the project to make curl return a usable exit code when
something goes wrong and it always returns 0 (zero) when the operation went as planned.

If you write a shell script or batch file that invokes curl, you can always check the return
code to detect problems in the invoked command. Below, you find a list of return codes as
of the time of this writing. Over time we tend to slowly add new ones so if you get a code
back not listed here, please refer to more updated curl documentation for aid.

A basic Unix shell script could look like something like this:

#!/bin/sh
curl http://example.com
res=$?
if test "$res" != "0"; then

echo "the curl command failed with: $res"
fi

Available exit codes
1. Unsupported protocol. This build of curl has no support for this protocol. Usually

this happens because the URL was misspelled to use a scheme part that either has a
space in front of it or spells http like htpt or similar. Another common mistake is
that you use a libcurl installation that was built with one or more protocols disabled
and you now ask libcurl to use one of those protocols that were disabled in the build.

2. Failed to initialize. This is mostly an internal error or a problem with the libcurl
installation or system libcurl runs in.

3. URL malformed. The syntax was not correct. This happens when you mistype
a URL so that it ends up wrong, or in rare situations you are using a URL that
is accepted by another tool that curl does not support only because there is no
universal URL standard that everyone adheres to.

4. A feature or option that was needed to perform the desired request was not enabled
or was explicitly disabled at build-time. To make curl able to do this, you probably
need another build of libcurl.

5. Couldn’t resolve proxy. The address of the given proxy host could not be resolved.
Either the given proxy name is just wrong, or the DNS server is misbehaving and
does not know about this name when it should or perhaps even the system you run
curl on is misconfigured so that it does not find/use the correct DNS server.

136



AVAILABLE EXIT CODES 137

6. Couldn’t resolve host. The given remote host’s address was not resolved. The
address of the given server could not be resolved. Either the given hostname is just
wrong, or the DNS server is misbehaving and does not know about this name when
it should or perhaps even the system you run curl on is misconfigured so that it does
not find/use the correct DNS server.

7. Failed to connect to host. curl managed to get an IP address to the machine and it
tried to setup a TCP connection to the host but failed. This can be because you have
specified the wrong port number, entered the wrong hostname, the wrong protocol
or perhaps because there is a firewall or another network equipment in between that
blocks the traffic from getting through.

8. Unknown FTP server response. The server sent data curl could not parse. This is
either because of a bug in curl, a bug in the server or because the server is using an
FTP protocol extension that curl does not support. The only real work-around for
this is to tweak curl options to try it to use other FTP commands that perhaps do
not get this unknown server response back.

9. FTP access denied. The server denied login or denied access to the particular
resource or directory you wanted to reach. Most often you tried to change to a
directory that does not exist on the server. The directory of course is what you
specify in the URL.

10. FTP accept failed. While waiting for the server to connect back when an active
FTP session is used, an error code was sent over the control connection or similar.

11. FTP weird PASS reply. Curl could not parse the reply sent to the PASS request.
PASS in the command curl sends the password to the server with, and even anony-
mous connections to FTP server actually sends a password - a fixed anonymous
string. Getting a response back from this command that curl does not understand is
a strong indication that this is not an FTP server at all or that the server is badly
broken.

12. During an active FTP session (PORT is used) while waiting for the server to connect,
the timeout expired. It took too long for the server to get back. This is usually a
sign that something is preventing the server from reaching curl successfully. Like a
firewall or other network arrangements.

13. Unknown response to FTP PASV command, Curl could not parse the reply sent
to the PASV request. This is a strange server. PASV is used to setup the second
data transfer connection in passive mode, see the FTP uses two connections section
for more on that. You might be able to work-around this problem by using PORT
instead, with the --ftp-port option.

14. Unknown FTP 227 format. Curl could not parse the 227-line the server sent. This
is most certainly a broken server. A 227 is the FTP server’s response when sending
back information on how curl should connect back to it in passive mode. You might
be able to work-around this problem by using PORT instead, with the --ftp-port
option.

15. FTP cannot get host. Couldn’t use the host IP address we got in the 227-line. This
is most likely an internal error.

16. HTTP/2 error. A problem was detected in the HTTP2 framing layer. This is



138 EXIT CODE

somewhat generic and can be one out of several problems, see the error message for
details.

17. FTP could not set binary. Couldn’t change transfer method to binary. This server
is broken. curl needs to set the transfer to the correct mode before it is started as
otherwise the transfer cannot work.

18. Partial file. Only a part of the file was transferred. When the transfer is considered
complete, curl verifies that it actually received the same amount of data that it was
told before-hand that it was going to get. If the two numbers do not match, this is
the error code. It could mean that curl got fewer bytes than advertised or that it
got more. curl itself cannot know which number that is wrong or which is correct. If
any.

19. FTP could not download/access the given file. The RETR (or similar) command
failed. curl got an error from the server when trying to download the file.

20. Not used

21. Quote error. A quote command returned an error from the server. curl allows several
different ways to send custom commands to a IMAP, POP3, SMTP or FTP server
and features a generic check that the commands work. When any of the individually
issued commands fails, this is exit status is returned. The advice is generally to
watch the headers in the FTP communication to better understand exactly what
failed and how.

22. HTTP page not retrieved. The requested URL was not found or returned another
error with the HTTP error code being 400 or above. This return code only appears
if -f, --fail is used.

23. Write error. Curl could not write data to a local filesystem or similar. curl receives
data chunk by chunk from the network and it stores it like at (or writes it to stdout),
one piece at a time. If that write action gets an error, this is the exit status.

24. Not used

25. Upload failed. The server refused to accept or store the file that curl tried to send
to it. This is usually due to wrong access rights on the server but can also happen
due to out of disk space or other resource constraints. This error can happen for
many protocols.

26. Read error. Various reading problems. The inverse to exit status 23. When curl
sends data to a server, it reads data chunk by chunk from a local file or stdin or
similar, and if that reading fails in some way this is the exit status curl returns.

27. Out of memory. A memory allocation request failed. curl needed to allocate more
memory than what the system was willing to give it and curl had to exit. Try using
smaller files or make sure that curl gets more memory to work with.

28. Operation timeout. The specified time-out period was reached according to the
conditions. curl offers several timeouts, and this exit code tells one of those timeout
limits were reached. Extend the timeout or try changing something else that allows
curl to finish its operation faster. Often, this happens due to network and remote
server situations that you cannot affect locally.

29. Not used



AVAILABLE EXIT CODES 139

30. FTP PORT failed. The PORT command failed. Not all FTP servers support the
PORT command; try doing a transfer using PASV instead. The PORT command is
used to ask the server to create the data connection by connecting back to curl. See
also the FTP uses two connections section.

31. FTP could not use REST. The REST command failed. This command is used for
resumed FTP transfers. curl needs to issue the REST command to do range or
resumed transfers. The server is broken, try the same operation without range/resume
as a crude work-around.

32. Not used

33. HTTP range error. The range request did not work. Resumed HTTP requests are
not necessary acknowledged or supported, so this exit code signals that for this
resource on this server, there can be no range or resumed transfers.

34. HTTP post error. Internal post-request generation error. If you get this error, please
report the exact circumstances to the curl project.

35. A TLS/SSL connect error. The SSL handshake failed. The SSL handshake can fail
due to numerous different reasons so the error message may offer some additional
clues. Maybe the parties could not agree to a SSL/TLS version, an agreeable cipher
suite or similar.

36. Bad download resume. Could not continue an earlier aborted download. When
asking to resume a transfer that then ends up not possible to do, this error can get
returned. For FILE, FTP or SFTP.

37. Couldn’t read the given file when using the FILE:// scheme. Failed to open the file.
The file could be non-existing or is it a permission problem perhaps?

38. LDAP cannot bind. LDAP “bind” operation failed, which is a necessary step in the
LDAP operation and thus this means the LDAP query could not be performed. This
might happen because of wrong username or password, or for other reasons.

39. LDAP search failed. The given search terms caused the LDAP search to return an
error.

40. Not used

41. Not used

42. Aborted by callback. An application told libcurl to abort the operation. This error
code is not generally made visible to users and not to users of the curl tool.

43. Bad function argument. A function was called with a bad parameter - this return
code is present to help application authors to understand why libcurl cannot perform
certain actions and should never be return by the curl tool. Please file a bug report
to the curl project if this happens to you.

44. Not used

45. Interface error. A specified outgoing network interface could not be used. curl
typically decides outgoing network and IP addresses by itself but when explicitly
asked to use a specific one that curl cannot use, this error can occur.

46. Not used



140 EXIT CODE

47. Too many redirects. When following HTTP redirects, libcurl hit the maximum
number set by the application. The maximum number of redirects is unlimited by
libcurl but is set to 50 by default by the curl tool. The limit is present to stop
endless redirect loops. Change the limit with --max-redirs.

48. Unknown option specified to libcurl. This could happen if you use a curl version
that is out of sync with the underlying libcurl version. Perhaps your newer curl
tries to use an option in the older libcurl that was not introduced until after the
libcurl version you are using but is known to your curl tool code as that is newer.
To decrease the risk of this and make sure it does not happen: use curl and libcurl
of the same version number.

49. Malformed telnet option. The telnet options you provide to curl was not using the
correct syntax.

50. Not used

51. The server’s SSL/TLS certificate or SSH fingerprint failed verification. curl can then
not be sure of the server being who it claims to be. See the using TLS with curl and
using SCP and SFTP with curl sections for more details.

52. The server did not reply anything, which in this context is considered an error. When
an HTTP(S) server responds to an HTTP(S) request, it always returns something
as long as it is alive and sound. All valid HTTP responses have a status line and
responses header. Not getting anything at all back is an indication the server is
faulty or perhaps that something prevented curl from reaching the right server or
that you are trying to connect to the wrong port number etc.

53. SSL crypto engine not found.

54. Cannot set SSL crypto engine as default.

55. Failed sending network data. Sending data over the network is a crucial part of most
curl operations and when curl gets an error from the lowest networking layers that
the sending failed, this exit status gets returned. To pinpoint why this happens, some
serious digging is usually required. Start with enabling verbose mode, do tracing
and if possible check the network traffic with a tool like Wireshark or similar.

56. Failure in receiving network data. Receiving data over the network is a crucial part
of most curl operations and when curl gets an error from the lowest networking layers
that the receiving of data failed, this exit status gets returned. To pinpoint why
this happens, some serious digging is usually required. Start with enabling verbose
mode, do tracing and if possible check the network traffic with a tool like Wireshark
or similar.

57. Not used

58. Problem with the local certificate. The client certificate had a problem so it could
not be used. Permissions? The wrong pass phrase?

59. Couldn’t use the specified SSL cipher. The cipher names need to be specified exact
and they are also unfortunately specific to the particular TLS backend curl has been
built to use. For the current list of support ciphers and how to write them, see the
online docs at https://curl.se/docs/ssl-ciphers.html.

https://curl.se/docs/ssl-ciphers.html


AVAILABLE EXIT CODES 141

60. Peer certificate cannot be authenticated with known CA certificates. This usually
means that the certificate is either self-signed or signed by a CA (Certificate Authority)
that is not present in the CA store curl uses.

61. Unrecognized transfer encoding. Content received from the server could not be
parsed by curl.

62. Not used

63. Maximum file size exceeded. When curl has been told to restrict downloads to not
do it if the file is too big, this is the exit code for that condition.

64. Requested SSL (TLS) level failed. In most cases this means that curl failed to
upgrade the connection to TLS when asked to.

65. Sending the data requires a rewind that failed. In some situations curl needs to
rewind in order to send the data again and if this cannot be done, the operations
fails.

66. Failed to initialize the OpenSSL SSL Engine. This can only happen when OpenSSL
is used and would signify a serious internal problem.

67. The user name, password, or similar was not accepted and curl failed to log in. Verify
that the credentials are provided correctly and that they are encoded the right way.

68. File not found on TFTP server.

69. Permission problem on TFTP server.

70. Out of disk space on TFTP server.

71. Illegal TFTP operation.

72. Unknown TFTP transfer ID.

73. File already exists (TFTP).

74. No such user (TFTP).

75. Not used

76. Not used

77. Problem with reading the SSL CA cert. The default or specified CA cert bundle
could not be read/used to verify the server certificate.

78. The resource (file) referenced in the URL does not exist.

79. An unspecified error occurred during the SSH session. This sometimes indicate an
incompatibility problem between the SSH libcurl curl uses and the SSH version used
by the server curl speaks to.

80. Failed to shut down the SSL connection.

81. Not used

82. Could not load CRL file, missing or wrong format

83. TLS certificate issuer check failed. The most common reason for this is that the
server did not send the proper intermediate certificate in the TLS handshake.



142 EXIT CODE

84. The FTP PRET command failed. This is a non-standard command and far from all
servers support it.

85. RTSP: mismatch of CSeq numbers

86. RTSP: mismatch of Session Identifiers

87. Unable to parse FTP file list. The FTP directory listing format used by the server
could not be parsed by curl. FTP wildcards can not be used on this server.

88. FTP chunk callback reported error

89. No connection available, the session is queued

90. SSL public key does not matched pinned public key. Either you provided a bad
public key, or the server has changed.

91. Invalid SSL certificate status. The server did not provide a proper valid certificate
in the TLS handshake.

92. Stream error in HTTP/2 framing layer. This is usually an unrecoverable error, but
trying to force curl to speak HTTP/1 instead might circumvent it.

93. An API function was called from inside a callback. If the curl tool returns this,
something has gone wrong internally

94. Authentication error.

95. HTTP/3 layer error. This is somewhat generic and can be one out of several problems,
see the error message for details.

96. QUIC connection error. This error may be caused by an TLS library error. QUIC is
the transport protocol used for HTTP/3.

97. Proxy handshake error. Usually that means that a SOCKS proxy did not play along.

98. A TLS client certificate is required but was not provided.

99. An internal call to poll() or select() returned error that is not recoverable.

Error message
When curl exits with a non-zero code, it also outputs an error message (unless --silent
is used). That error message may add some additional information or circumstances to
the exit status number itself so the same error number can get different error messages.

Users can also craft their own error messages with –write-out. The pseudo variable
%{onerror} allows you to set a message that only gets displayed on errors, and it offers
%{errormsg} and %{exitcode} among all the variables.

For example:

curl --write-out "%{onerror}curl says: (%{exitcode}) %{errormsg}" \
https://curl.se/



“NOT USED” 143

“Not used”
The list of exit codes above contains a number of values marked as ‘not used’. Those are
exit status codes that are not used in modern versions of curl but that have been used or
were intended to be used in the past. They may be used in a future version of curl.

Additionally, the highest used error status in this list is 99, but future curl versions might
have added more exit codes after that number.



Copy as curl

Using curl to reproduce an operation a user just managed to do with his or her browser is
a common request and area people ask for help about.

How do you get a curl command line to get a resource, just like the browser would get it,
nice and easy? Chrome, Firefox, Edge and Safari all have this feature.

From Firefox
You get the site shown with Firefox’s network tools. You then right-click on the specific
request you want to repeat in the “Web Developer->Network” tool when you see the HTTP
traffic, and in the menu that appears you select “Copy as cURL”. Like this screenshot
below shows. The operation then generates a curl command line to your clipboard and you
can then paste that into your favorite shell window. This feature is available by default in
all Firefox installations.

From Chrome and Edge
When you pop up the More tools->Developer mode in Chrome or Edge, and you select the
Network tab you see the HTTP traffic used to get the resources of the site. On the line of
the specific resource you are interested in, you right-click with the mouse and you select
“Copy as cURL” and it generates a command line for you in your clipboard. Paste that in
a shell to get a curl command line that makes the transfer. This feature is available by
default in all Chrome and Chromium installations. (Note: Chromium browsers in Windows
may generate an incorrect command line that is misquoted due to a bug in Chromium).

From Safari
In Safari, the “development” menu is not visible until you go into preferences-
>Advanced and enable it. But once you have done that, you can select Show web
inspector in that development menu and get to see a new console pop up that is similar
to the development tools of Firefox and Chrome.

Select the network tab, reload the webpage and then you can right click the particular
resources that you want to fetch with curl, as if you did it with Safari..

144

https://bugs.chromium.org/p/chromium/issues/detail?id=1242803


FROM SAFARI 145

Figure 6: copy as curl with Firefox



146 COPY AS CURL

Figure 7: copy as curl with Chrome



FROM SAFARI 147

Figure 8: copy as curl with Safari



148 COPY AS CURL

On Firefox, without using the devtools
If this is something you would like to get done more often, you probably find using the
developer tools a bit inconvenient and cumbersome to pop up just to get the command
line copied. Then cliget is the perfect add-on for you as it gives you a new option in the
right-click menu, so you can get a quick command line generated really quickly, like this
example when I right-click an image in Firefox:

Figure 9: cliget with Firefox

Not perfect
These methods all give you a command line to reproduce their HTTP transfers. They are
often not the perfect solution to your problems. Why? Well mostly because these tools
are written to rerun the exact same request that you copied, while you often want to rerun
the same logic but not send an exact copy of the same cookies and file contents etc.

These tools give you command lines with static and fixed cookie contents to send in the
request, because that is the contents of the cookies that were sent in the browser’s requests.
You most likely want to rewrite the command line to dynamically adapt to whatever the
content is in the cookie that the server told you in a previous response. Etc.

The copy as curl functionality is also often notoriously bad at using -F and instead they
provide handcrafted --data-binary solutions including the mime separator strings etc.

https://addons.mozilla.org/en-US/firefox/addon/cliget/


Command line transfers

Previous chapters described curl concepts and something about the basic command lines.
You use command-line options and you pass on URLs to work with.

In this chapter, we are going to dive deeper into doing actual transfers with curl. What
the curl tool can do and how to tell curl to use these features to send or retrieve data for
you. You should consider all these features as different tools that are here to help you do
your file transfer tasks as conveniently as possible.

• Verbose
• Downloads
• Uploads
• Transfer controls
• Connections
• Timeouts
• .netrc
• Proxies
• TLS
• SCP and SFTP
• Reading email
• Sending email
• DICT
• IPFS
• MQTT
• TELNET
• TFTP

149



Verbose

If your curl command does not execute or return what you expected it to, your first gut
reaction should always be to run the command with the -v / --verbose option to get
more information.

When verbose mode is enabled, curl gets more talkative and explains and shows a lot
more of its doings. It adds informational tests and prefix them with ‘*’. For example, let’s
see what curl might say when trying a simple HTTP example (saving the downloaded
data in the file called ‘saved’):

$ curl -v http://example.com -o saved
* Rebuilt URL to: http://example.com/

Ok so we invoked curl with a URL that it considers incomplete so it helps us and it adds
a trailing slash before it moves on.

* Trying 93.184.216.34...

This tells us curl now tries to connect to this IP address. It means the name ‘example.com’
has been resolved to one or more addresses and this is the first (and possibly only) address
curl tries to connect to.

* Connected to example.com (93.184.216.34) port 80 (#0)

It worked. curl connected to the site and here it explains how the name maps to the IP
address and on which port it has connected to. The ‘(#0)’ part is which internal number
curl has given this connection. If you try multiple URLs in the same command line you can
see it use more connections or reuse connections, so the connection counter may increase
or not increase depending on what curl decides it needs to do.

If we use an HTTPS:// URL instead of an HTTP one, there are also a whole bunch of lines
explaining how curl uses CA certs to verify the server’s certificate and some details from
the server’s certificate, etc. Including which ciphers were selected and more TLS details.

In addition to the added information given from curl internals, the -v verbose mode also
makes curl show all headers it sends and receives. For protocols without headers (like
FTP, SMTP, POP3 and so on), we can consider commands and responses as headers and
they thus also are shown with -v.

If we then continue the output seen from the command above (but ignore the actual
HTML response), curl shows:

> GET / HTTP/1.1
> Host: example.com
> User-Agent: curl/7.45.0

150



HTTP/2 AND HTTP/3 151

> Accept: */*
>

This is the full HTTP request to the site. This request is how it looks in a default curl
7.45.0 installation and it may, of course, differ slightly between different releases and in
particular it changes if you add command line options.

The last line of the HTTP request headers looks empty, and it is. It signals the separation
between the headers and the body, and in this request there is no “body” to send.

Moving on and assuming everything goes according to plan, the sent request gets a
corresponding response from the server and that HTTP response starts with a set of
headers before the response body:

< HTTP/1.1 200 OK
< Accept-Ranges: bytes
< Cache-Control: max-age=604800
< Content-Type: text/html
< Date: Sat, 19 Dec 2015 22:01:03 GMT
< Etag: "359670651"
< Expires: Sat, 26 Dec 2015 22:01:03 GMT
< Last-Modified: Fri, 09 Aug 2013 23:54:35 GMT
< Server: ECS (ewr/15BD)
< Vary: Accept-Encoding
< X-Cache: HIT
< x-ec-custom-error: 1
< Content-Length: 1270
<

This may look mostly like mumbo jumbo to you, but this is a normal set of HTTP headers—
metadata—about the response. The first line’s “200” might be the most important piece
of information in there and means “everything is fine”.

The last line of the received headers is, as you can see, empty, and that is the marker used
for the HTTP protocol to signal the end of the headers.

After the headers comes the actual response body, the data payload. The regular -v
verbose mode does not show that data but only displays

{ [1270 bytes data]

That 1270 bytes should then be in the ‘saved’ file. You can also see that there was a header
named Content-Length: in the response that contained the exact file length (though it
may not always be present in responses).

HTTP/2 and HTTP/3
When doing file transfers using version two or three of the HTTP protocol, curl sends and
receives compressed headers. To display outgoing and incoming HTTP/2 and HTTP/3
headers in a readable and understandable way, curl shows the uncompressed versions in a
style similar to how they appear with HTTP/1.1.



152 VERBOSE

Silence
The opposite of verbose is, of course, to make curl more silent. With the -s (or --silent)
option you make curl switch off the progress meter and not output any error messages for
when errors occur. It gets mute. It still outputs the downloaded data you ask it to.

With silence activated, you can ask for it to still output the error message on failures by
adding -S or --show-error.

• Trace options
• Write out



Trace options

There are times when -v is not enough. In particular, when you want to store the complete
stream including the actual transferred data.

For situations when curl does encrypted file transfers with protocols such as HTTPS,
FTPS or SFTP, other network monitoring tools (like Wireshark or tcpdump) are not able
to do this job as easily for you.

For this, curl offers two other options that you use instead of -v.

--trace [filename] saves a full trace in the given filename. You can also use ‘-’ (a single
minus) instead of a filename to get it passed to stdout. You would use it like this:

$ curl --trace dump http://example.com

When completed, there is a ‘dump’ file that can turn out pretty sizable. In this case, the
15 first lines of the dump file looks like:

== Info: Rebuilt URL to: http://example.com/
== Info: Trying 93.184.216.34...
== Info: Connected to example.com (93.184.216.34) port 80 (#0)
=> Send header, 75 bytes (0x4b)
0000: 47 45 54 20 2f 20 48 54 54 50 2f 31 2e 31 0d 0a GET / HTTP/1.1..
0010: 48 6f 73 74 3a 20 65 78 61 6d 70 6c 65 2e 63 6f Host: example.co
0020: 6d 0d 0a 55 73 65 72 2d 41 67 65 6e 74 3a 20 63 m..User-Agent: c
0030: 75 72 6c 2f 37 2e 34 35 2e 30 0d 0a 41 63 63 65 url/7.45.0..Acce
0040: 70 74 3a 20 2a 2f 2a 0d 0a 0d 0a pt: */*....
<= Recv header, 17 bytes (0x11)
0000: 48 54 54 50 2f 31 2e 31 20 32 30 30 20 4f 4b 0d HTTP/1.1 200 OK.
0010: 0a .
<= Recv header, 22 bytes (0x16)
0000: 41 63 63 65 70 74 2d 52 61 6e 67 65 73 3a 20 62 Accept-Ranges: b
0010: 79 74 65 73 0d 0a ytes..

Every single sent and received byte get displayed individually in hexadecimal numbers.
Received headers are output line by line.

If you think the hexadecimals are not helping, you can try --trace-ascii [filename]
instead, also this accepting ‘-’ for stdout and that makes the 15 first lines of tracing look
like:

== Info: Rebuilt URL to: http://example.com/
== Info: Trying 93.184.216.34...
== Info: Connected to example.com (93.184.216.34) port 80 (#0)

153



154 TRACE OPTIONS

=> Send header, 75 bytes (0x4b)
0000: GET / HTTP/1.1
0010: Host: example.com
0023: User-Agent: curl/7.45.0
003c: Accept: */*
0049:
<= Recv header, 17 bytes (0x11)
0000: HTTP/1.1 200 OK
<= Recv header, 22 bytes (0x16)
0000: Accept-Ranges: bytes
<= Recv header, 31 bytes (0x1f)
0000: Cache-Control: max-age=604800

Time stamps
The --trace-time option prefixes all verbose/trace outputs with a high resolution timer
for when the line is printed. It works with the regular -v / --verbose option as well as
with --trace and --trace-ascii.

An example could look like this:

$ curl -v --trace-time http://example.com
23:38:56.837164 * Rebuilt URL to: http://example.com/
23:38:56.841456 * Trying 93.184.216.34...
23:38:56.935155 * Connected to example.com (93.184.216.34) port 80 (#0)
23:38:56.935296 > GET / HTTP/1.1
23:38:56.935296 > Host: example.com
23:38:56.935296 > User-Agent: curl/7.45.0
23:38:56.935296 > Accept: */*
23:38:56.935296 >
23:38:57.029570 < HTTP/1.1 200 OK
23:38:57.029699 < Accept-Ranges: bytes
23:38:57.029803 < Cache-Control: max-age=604800
23:38:57.029903 < Content-Type: text/html
---- snip ----

The lines are all the local time as hours:minutes:seconds and then number of microseconds
in that second.

Identify transfers and connections
As the trace information flow showing on screen or to a file using these options is a
continuous stream even though your command line might make curl use a large number of
separate connections and different transfers, there are times when you want to see to which
specific transfers or connections the various information below to. To better understand
the trace output.

You can then add --trace-ids to the line and you see how curl adds two numbers to all
tracing: the connection number and the transfer number. They are two separate identifiers
because connections can be reused and multiple transfers can use the same connection.



MORE DATA 155

More data
If the amount of tracing data is not enough. Like when you suspect and want to debug a
problem in a more fundamental lower protocol level, curl provides the --trace-config
option for you.

With this option you tell curl to also include logging about components that it otherwise
does not include by default. Such as details about TLS, HTTP/2 or HTTP/3 protocol
bits. It also has convenience options for adding the connection and transfers identifiers
and time stamps.

The --trace-config option accepts an argument where you specify a comma-separated
list with the areas you want it to trace. For example, include identifiers and show me
HTTP/2 details:

curl --trace-config ids,http/2 https://example.com

The exact set of options varies, but here are some ones to try:

area description
ids the same identifiers as --trace-ids provides
time the same time output as --trace-time provides
all show everything possible
tls TLS protocol exchange details
http/2 HTTP/2 frame information
http/3 HTTP/3 frame information
* additional ones in future versions

Doing a quick run with all is often a good way to get to see which specific areas that are
shown, as then you can do follow-up runs with more specific areas set.



Write out

--write-out or just -w for short, outputs text and information after a transfer is completed.
It offers a large range of variables that you can include in the output, variables that have
been set with values and information from the transfer.

Instruct curl to output a string by passing plain text to this option:

curl -w "formatted string" http://example.com/

. . . and you can also have curl read that string from a given file instead if you prefix the
string with ‘@’:

curl -w @filename http://example.com/

. . . or even have curl read the string from stdin if you use ‘-’ as filename:

curl -w @- http://example.com/

Variables
The variables that are available are accessed by writing %{variable_name} in the string
and that variable is substituted by the correct value. To output a plain % you write it as
%%. You can also output a newline by using , a carriage return with and a tab space with .

As an example, we can output the Content-Type and the response code from an HTTP
transfer, separated with newlines and some extra text like this:

curl -w "Type: %{content_type}\nCode: %{response_code}\n" \
http://example.com

The output is sent to stdout by default so you probably want to make sure that you do
not also send the downloaded content to stdout as then you might have a hard time to
separate out the data; or use %{stderr} to send the output to stderr.

HTTP headers
This option also provides an easy to use way to output the contents of HTTP response
headers from the most recent transfer.

Use %header{name} in the string, where name is the case insensitive name of the header
(without the trailing colon). The output header contents are then shown exactly as was
sent over the network, with leading and trailing whitespace trimmed. Like this:

curl -w "Server: %header{server}\n" http://example.com

156



OUTPUT 157

Output
By default, this option makes the selected data get output on stdout. If that is not good
enough, the pseudo-variable %{stderr} can be used to direct (the following) part to stderr
and %{stdout} brings it back to stdout.

From curl 8.3.0, there is a feature that lets users send the write-out output to a file:
%output{filename}. The data following is then written to that file. If you would rather
have curl append to that file instead of creating it from scratch, prefix the filename with
>>. Like this: %output{>>filename}.

A write-out argument can include output to stderr, stdout and files as the user sees fit.

Windows
NOTE: In Windows, the %-symbol is a special symbol used to expand environment
variables. In batch files all occurrences of % must be doubled when using this option to
properly escape. If this option is used at the command prompt then the % cannot be
escaped and unintended expansion is possible.

Available –write-out variables
Some of these variables are not available in really old curl versions.

Variable Description
certs Outputs the certificate chain from the most recent TLS

handshake - with details. (Introduced in 7.88.0)
content_type Content-Type of the requested document, if there was

any.
errormsg Error message from the transfer. Empty if no error

occurred. (Introduced in 7.75.0)
exitcode Numerical exit code from the transfer. 0 if no error

occurred. (Introduced in 7.75.0)
filename_effective The ultimate filename that curl writes out to. Practical if

curl is told to write to a file with the --remote-name or
--output option. It is most useful in combination with
the --remote-header-name option.

ftp_entry_path The initial path curl ended up in when logging on to the
remote FTP server.

http_code The former variable name for what is now known as
response_code.

http_connect the numerical code that was found in the last response
(from a proxy) to a curl CONNECT request.

http_version The HTTP version that was used.
json all write-out variables as a single JSON object.

(Introduced in 7.72.0)
local_ip IP address of the local end of the most recently used

connection - can be either IPv4 or IPv6
local_port Local port number of the most recently used connection



158 WRITE OUT

Variable Description
method HTTP method the most recent request used
num_certs Number of the certificates in the most recent TLS

handshake. (Introduced in 7.88.0)
num_connects Number of new connects made in the recent transfer.
num_headers Number of response headers in the last response
num_redirects Number of redirects that were followed in the request.
onerror If the transfer ended with an error, show the rest of the

string, otherwise stop here. (Introduced in 7.75.0)
proxy_ssl_verify_result The result of the SSL peer certificate verification that

was requested when communicating with a proxy. 0
means the verification was successful.

redirect_url The actual URL a redirect would take you to when an
HTTP request was made without -L to follow redirects.

remote_ip The remote IP address of the most recently used
connection — can be either IPv4 or IPv6.

remote_port The remote port number of the most recently made
connection.

response_code The numerical response code that was found in the last
transfer.

scheme scheme used in the previous URL
size_download Total number of bytes that were downloaded.
size_header Total number of bytes of the downloaded headers.
size_request Total number of bytes that were sent in the HTTP

request.
size_upload Total number of bytes that were uploaded.
speed_download Average download speed that curl measured for the

complete download in bytes per second.
speed_upload Average upload speed that curl measured for the

complete upload in bytes per second.
ssl_verify_result the result of the SSL peer certificate verification that was

requested. 0 means the verification was successful.
stderr Makes the rest of the output get written to stderr.
stdout makes the rest of the output get written to stdout.
time_appconnect The time in seconds, it took from the start until the

SSL/SSH/etc connect/handshake to the remote host was
completed.

time_connect The time in seconds, it took from the start until the TCP
connect to the remote host (or proxy) was completed.

time_namelookup The time in seconds, it took from the start until the
name resolving was completed.

time_pretransfer The time in seconds, it took from the start until the file
transfer was just about to begin. This includes all
pre-transfer commands and negotiations that are specific
to the particular protocol(s) involved.

time_redirect The time in seconds, it took for all redirection steps
including name lookup, connect, pre-transfer and transfer
before the final transaction was started. time_redirect
the complete execution time for multiple redirections.



AVAILABLE –WRITE-OUT VARIABLES 159

Variable Description
time_starttransfer The time in seconds, it took from the start until the first

byte was just about to be transferred. This includes
time_pretransfer and also the time the server needed to
calculate the result.

time_total The total time in seconds, that the full operation lasted.
The time is displayed with millisecond resolution.

url The URL used in the transfer. (Introduced in 7.75.0)
url_effective The URL that was fetched last. This is particularly

meaningful if you have told curl to follow Location:
headers (with -L).

urlnum 0-based numerical index of the URL used in the transfer.
(Introduced in 7.75.0)

In curl 8.1.0, variables to output only specific URL components were added. When the
url or url_effective show more than you want.

Variable Description
url.scheme The scheme part of the URL that was fetched.
url.user The user part of the URL that was fetched.
url.password The password part of the URL that was fetched.
url.options The options part of the URL that was fetched. Only available for

some schemes.
url.host The hostname part of the URL that was fetched.
url.path The path part of the URL that was fetched.
url.query The query part of the URL that was fetched.
url.fragment The fragment part of the URL that was fetched.
url.zoneid The zone id part of the URL that was fetched. Only available if the

hostname is an IPv6 address.
urle.scheme The scheme part of the effective (last) URL that was fetched.
urle.user The user part of the effective (last) URL that was fetched.
urle.password The password part of the effective (last) URL that was fetched.
urle.options The options part of the effective (last) URL that was fetched. Only

available for some schemes.
urle.host The hostname part of the effective (last) URL that was fetched.
urle.path The path part of the effective (last) URL that was fetched.
urle.query The query part of the effective (last) URL that was fetched.
urle.fragment The fragment part of the effective (last) URL that was fetched.
urle.zoneid The zone id part of the effective (last) URL that was fetched. Only

available if the hostname is an IPv6 address.



Downloads

“Download” means getting data from a server on a network, and the server is then clearly
considered to be “above” you. This is loading data down from the server onto your machine
where you are running curl.

Downloading is probably the most common use case for curl — retrieving the specific data
pointed to by a URL onto your machine.

• What exactly is downloading?
• Storing downloads
• Download to a file named by the URL

– Use the target filename from the server
• HTML and charsets
• Compression
• Shell redirects
• Multiple downloads
• My browser shows something else
• Maximum file size
• Storing metadata in file system
• Raw
• Retry
• Resuming and ranges

160



What exactly is downloading?

You specify the resource to download by giving curl a URL. curl defaults to downloading
a URL unless told otherwise, and the URL identifies what to download. In this example
the URL to download is http://example.com:

curl http://example.com

The URL is broken down into its individual components (as explained elsewhere), the
correct server is contacted and is then asked to deliver the specific resource—often a file.
The server then delivers the data, or it refuses or perhaps the client asked for the wrong
data and then that data is delivered.

A request for a resource is protocol-specific so an FTP:// URL works differently than an
HTTP:// URL or an SFTP:// URL.

A URL without a path part, that is a URL that has a hostname part only (like the
http://example.com example above) gets a slash (‘/’) appended to it internally and then
that is the resource curl asks for from the server.

If you specify multiple URLs on the command line, curl downloads each URL one by one.
It does not start the second transfer until the previous one is complete, etc.

161



Storing downloads

If you try the example download as in the previous section, you might notice that curl
outputs the downloaded data to stdout unless told to do something else. Outputting data
to stdout is really useful when you want to pipe it into another program or similar, but it
is not always the optimal way to deal with your downloads.

Give curl a specific filename to save the download in with -o [filename] (with --output
as the long version of the option), where filename is either just a filename, a relative path
to a filename or a full path to the file.

Also note that you can put the -o before or after the URL; it makes no difference:

curl -o output.html http://example.com/
curl -o /tmp/index.html http://example.com/
curl http://example.com -o ../../folder/savethis.html

This is, of course, not limited to http:// URLs but works the same way no matter which
type of URL you download:

curl -o file.txt ftp://example.com/path/to/file-name.ext

If you ask curl to send the output to the terminal, it attempts to detect and prevent binary
data from being sent there since that can seriously mess up your terminal (sometimes to
the point where it stops working). You can override curl’s binary-output-prevention and
force the output to get sent to stdout by using -o -.

curl has several other ways to store and name the downloaded data. Details follow.

Overwriting
When curl downloads a remote resource into a local filename as described above, it
overwrites that file in case it already existed. It clobbers it.

curl offers a way to avoid this clobbering: --no-clobber.

When using this option, and curl finds that there already exists a file with the given name,
curl instead appends a period plus a number to the filename in an attempt to find a
name that is not already used. It starts with 1 and then continues trying numbers until it
reaches 100 and picks the first available one.

For example, if you ask curl to download a URL to picture.png, and in that directory
there already are two files called picture.png and picture.png.1, the following saves
the file as picture.png.2:

curl --no-clobber https://example.com/image -o picture.png

162



LEFTOVERS ON ERRORS 163

A user can use the –write-out option’s %filename_effective variable to figure out which
name that was eventually used.

Leftovers on errors
By default, if curl runs into a problem during a download and exits with an error, the
partially transferred file is left as-is. It could be a small fraction of the intended file, or
it could be almost the entire thing. It is up to the user to decide what to do with the
leftovers.

The --remove-on-error command line option changes this behavior. It tells curl to delete
any partially saved file if curl exits with an error. No more leftovers.



Download to a file named by the URL

Many URLs, however, already contain the filename part in the rightmost end. curl lets
you use that as a shortcut so you do not have to repeat it with -o. Instead of:

curl -o file.html http://example.com/file.html

You can save the remote URL resource into the local file ‘file.html’ with this:

curl -O http://example.com/file.html

This is the -O (uppercase letter o) option, or --remote-name for the long name version.
The -O option selects the local filename to use by picking the filename part of the URL
that you provide. This is important. You specify the URL and curl picks the name from
this data. If the site redirects curl further (and if you tell curl to follow redirects), it does
not change the filename curl uses for storing this.

Use the URL’s filename part for all URLs
As a reaction to adding a hundred -O options when using a hundred URLs, we introduced
an option called --remote-name-all. This makes -O the default operation for all given
URLs. You can still provide individual “storage instructions” for URLs but if you leave
one out for a URL that gets downloaded, the default action is then switched from stdout
to -O style.

164



Use the target filename from the
server

HTTP servers have the option to provide a header named Content-Disposition: in
responses. That header may contain a suggested filename for the contents delivered, and
curl can be told to use that hint to name its local file. The -J / --remote-header-name
enables this. If you also use the -O option, it makes curl use the filename from the URL
by default and only if there is actually a valid Content-Disposition header available, it
switches to saving using that name.

-J has some problems and risks associated with it that users need to be aware of:

1. It only uses the rightmost part of the suggested filename, so any path or directories
the server suggests are stripped out.

2. Since the filename is entirely selected by the server, curl might overwrite any
preexisting local file in your current directory if the server happens to provide such
a filename (unless you use --no-clobber).

3. filename encoding and character sets issues. curl does not decode the name in
any way, so you may end up with a URL-encoded filename where a browser would
otherwise decode it to something more readable using a sensible character set.

165



HTML and charsets

curl downloads the exact binary data that the server sends. This might be of importance
to you in case, for example, you download an HTML page or other text data that uses
a certain character encoding that your browser then displays as expected. curl does not
translate the arriving data.

A common example where this causes some surprising results is when a user downloads a
webpage with something like:

curl https://example.com/ -o storage.html

. . . and when inspecting the storage.html file after the fact, the user realizes that one or
more characters look funny or downright wrong. This might occur because the server sent
the characters using charset X, while your editor and environment use charset Y. In an
ideal world, we would all use UTF-8 everywhere but unfortunately, that is still not the
case.

A common work-around for this issue that works decently is to use the common iconv
utility to translate a text file to and from different charsets.

166



Compression

curl allows you to ask HTTP and HTTPS servers to provide compressed versions of the
data and then perform automatic decompression of it on arrival. In situations where
bandwidth is more limited than CPU this helps you receive more data in a shorter amount
of time.

HTTP compression can be done using two different mechanisms, one which might be
considered “The Right Way” and the other that is the way that everyone actually uses and
is the widespread and popular way to do it. The common way to compress HTTP content
is using the Content-Encoding header. You ask curl to use this with the --compressed
option:

curl --compressed http://example.com/

With this option enabled (and if the server supports it) it delivers the data in a compressed
way and curl decompresses it before saving it or sending it to stdout. This usually means
that as a user you do not really see or experience the compression other than possibly
noticing a faster transfer.

The --compressed option asks for Content-Encoding compression using one of the sup-
ported compression algorithms. There is also the rare Transfer-Encoding method,
which is the request header that was created for this automated method but was never
really widely adopted. You can tell curl to ask for Transfer-Encoded compression with
--tr-encoding:

curl --tr-encoding http://example.com/

In theory, there is nothing that prevents you from using both in the same command line,
although in practice, you may then experience that some servers get a little confused when
ask to compress in two different ways. It is generally safer to just pick one.

For SCP and SFTP transfers, there is --compressed-ssh. It compresses all traffic in
either direction.

HTTP headers
HTTP/1.x headers cannot be compressed. HTTP/2 and HTTP/3 headers on the other
hands are always compressed and cannot be sent uncompressed. However, as a convenience
to users, curl always shows the headers uncompressed in a style similar to how they look
for HTTP/1.x to make the output and look consistent.

167



168 COMPRESSION

Uploads
For HTTP there is no standard way to do compression. The above mentioned HTTP
compression methods only work for downloads.



Shell redirects

When you invoke curl from a shell or some other command-line prompt system, that
environment generally provides you with a set of output redirection abilities. In most
Linux and Unix shells and with Windows’ command prompts, you direct stdout to a file
with > filename. Using this, of course, makes the use of -o or -O superfluous.

curl http://example.com/ > example.html

Redirecting output to a file redirects all output from curl to that file, so even if you ask to
transfer more than one URL to stdout, redirecting the output gets all the URLs’ output
stored in that single file.

curl http://example.com/1 http://example.com/2 > files

Unix shells usually allow you to redirect the stderr stream separately. The stderr stream
is usually a stream that also gets shown in the terminal, but you can redirect it separately
from the stdout stream. The stdout stream is for the data while stderr is metadata and
errors, etc., that are not data. You can redirect stderr with 2>file like this:

curl http://example.com > files.html 2>errors

169



Multiple downloads

As curl can be told to download many URLs in a single command line, there are, of course,
times when you want to store these downloads in nicely named local files.

The key to understanding this is that each download URL needs its own “storage instruc-
tion”. Without said “storage instruction”, curl defaults to sending the data to stdout. If
you ask for two URLs and only tell curl where to save the first URL, the second one is
sent to stdout. Like this:

curl -o one.html http://example.com/1 http://example.com/2

The “storage instructions” are read and handled in the same order as the download URLs
so they do not have to be next to the URL in any way. You can round up all the output
options first, last or interleaved with the URLs. You choose.

These examples all work the same way:

curl -o 1.txt -o 2.txt http://example.com/1 http://example.com/2
curl http://example.com/1 http://example.com/2 -o 1.txt -o 2.txt
curl -o 1.txt http://example.com/1 http://example.com/2 -o 2.txt
curl -o 1.txt http://example.com/1 -o 2.txt http://example.com/2

The -O is similarly just an instruction for a single download so if you download multiple
URLs, use more of them:

curl -O -O http://example.com/1 http://example.com/2

Parallel
Unless told otherwise, curl downloads all given URLs in a serial fashion, one by one. By
using -Z (or --parallel) curl can instead do the transfers in parallel: several ones at
once.

170



My browser shows something else

A common use case is using curl to get a URL that you can get in your browser when you
paste the URL in the browser’s address bar.

A browser getting a URL as input does so much more and in so many different ways than
curl that what curl shows in your terminal output is probably not at all what you see in
your browser window.

Client differences
Curl only gets exactly what you ask it to get and it never parses the actual content—the
data—that the server delivers. A browser gets data and it activates different parsers
depending on what kind of content it thinks it gets. For example, if the data is HTML it
parses it to display a webpage and possibly download other sub resources such as images,
JavaScript and CSS files. When curl downloads HTML it just gets that single HTML
resource, even if it, when parsed by a browser, would trigger a whole busload of more
downloads. If you want curl to download any sub-resources as well, you need to pass those
URLs to curl and ask it to get those, just like any other URLs.

Clients also differ in how they send their requests, and some aspects of a request for a
resource include, for example, format preferences, asking for compressed data, or just
telling the server from which previous page we are “coming from”. curl’s requests differ a
little or a lot from how your browser sends its requests.

Server differences
The server that receives the request and delivers data is often setup to act in certain
ways depending on what kind of client it thinks communicates with it. Sometimes it is
as innocent as trying to deliver the best content for the client, sometimes it is to hide
some content for some clients or even to try to work around known problems in specific
browsers. Then there is also, of course, various kind of login systems that might rely on
HTTP authentication or cookies or the client being from the pre-validated IP address
range.

Sometimes getting the same response from a server using curl as the response you get with
a browser ends up really hard work. Users then typically record their browser sessions
with the browser’s networking tools and then compare that recording with recorded data
from curl’s --trace-ascii option and proceed to modify curl’s requests (often with -H /
--header) until the server starts to respond the same to both.

171



172 MY BROWSER SHOWS SOMETHING ELSE

This type of work can be both time consuming and tedious. You should always do this
with permission from the server owners or admins.

Intermediaries’ fiddlings
Intermediaries are proxies, explicit or implicit ones. Some environments force you to use
one or you may choose to use one for various reasons, but there are also the transparent
ones that intercept your network traffic silently and proxy it for you no matter what you
want.

Proxies are “middle men” that terminate the traffic and then act on your behalf to the
remote server. This can introduce all sorts of explicit filtering and “saving” you from
certain content or even “protecting” the remote server from what data you try to send to
it, but even more so it introduces another software’s view on how the protocol works and
what the right things to do are.

Interfering intermediaries are often the cause of lots of headaches and mysteries down to
downright malicious modifications of content.

We strongly encourage you to use HTTPS or other means to verify that the contents you
are downloading or uploading are really the data that the remote server has sent to you
and that your precious bytes end up verbatim at the intended destination.



Maximum filesize

When you want to make sure your curl command line does not download a too-large
file, instruct curl to stop before doing that, if it knows the size before the transfer starts.
Maybe that would use too much bandwidth, take too long time or you do not have enough
space on your hard drive:

curl --max-filesize 100000 https://example.com/

Give curl the largest download you can accept in number of bytes and if curl can figure out
the size before the transfer starts it aborts before trying to download something larger.

There are many situations in which curl cannot figure out the size at the time the transfer
starts. Such transfers thus are then aborted first when they actually reach that limit.

173



Storing metadata in file system

When saving a download to a file with curl, the --xattr option tells curl to also store certain
file metadata in “extended file attributes”. These extended attributes are standardized
name/value pairs stored in the file system, assuming one of the supported file systems and
operating systems are used.

Currently, the URL is stored in the xdg.origin.url attribute and, for HTTP, the content
type is stored in the mime_type attribute. If the file system does not support extended
attributes when this option is set, a warning is issued.

174



Raw

When --raw is used, it disables all internal HTTP decoding of content or transfer encodings
and instead makes curl passed on unaltered, raw, data.

This is typically used if you are writing a middle software and you want to pass on the
content to another HTTP client and allow that to do the decoding instead.

175



Retry

Normally curl only makes a single attempt to perform a transfer and returns an error if
not successful. Using the --retry option you can tell curl to retry certain failed transfers.

If a transient error is returned when curl tries to perform a transfer, it retries this number
of times before giving up. Setting the number to 0 makes curl do no retries (which is the
default). Transient error means either: a timeout, an FTP 4xx response code or an HTTP
5xx response code.

Tweak your retries
When curl is about to retry a transfer, it first waits one second and then for all forthcoming
retries it doubles the waiting time until it reaches 10 minutes which then is the delay
between the rest of the retries. Using --retry-delay you can disable this exponential
backoff algorithm and set your own delay between the attempts. With --retry-max-time
you cap the total time allowed for retries. The --max-time option still specifies the longest
time a single of these transfers is allowed to spend.

Make curl retry up to 5 times, but no more than two minutes:

curl --retry 5 --retry-max-time 120 https://example.com

Connection refused
The default retry mechanism only retries transfers for what are considered transient errors.
Those are errors that the server itself hints and qualifies as being there right now but that
might be gone at a later time.

Sometimes you as a user know more about the situation and you can then help out curl to
do better retries. For starters, you can tell curl to consider “connection refused” to be a
transient error. Maybe you know that the server you communicate with is a flaky one or
maybe you know that you sometimes try to download from it when it reboots or similar.
You use --retry-connrefused for this.

For example: retry up to 5 times and consider ECONNREFUSED a reason for retry:

curl --retry 5 --retry-connrefused https://example.com

176



RETRY ON ANY AND ALL ERRORS 177

Retry on any and all errors
The most aggressive form of retry is for the cases where you know that the URL is
supposed to work and you do not tolerate any failures. Using --retry-all-errors makes
curl treat all transfers failures as reason for retry.

For example: retry up to 12 times for all errors:

curl --retry 12 --retry-all-errors https://example.com



Resuming and ranges

Resuming a download means first checking the size of what is already present locally
and then asking the server to send the rest of it so it can be appended. curl also allows
resuming the transfer at a custom point without actually having anything already locally
present.

curl supports resumed downloads on several protocols. Tell it where to start the transfer
with the -C, --continue-at option that takes either a plain numerical byte counter offset
where to start or the string - that asks curl to figure it out itself based on what it knows.
When using -, curl uses the destination filename to figure out how much data that is
already present locally and ask use that as an offset when asking for more data from the
server.

To start downloading an FTP file from byte offset 100:

curl --continue-at 100 ftp://example.com/bigfile

Continue downloading a previously interrupted download:

curl --continue-at - http://example.com/bigfile -O

If you instead just want a specific byte range from the remote resource transferred, you
can ask for only that. For example, when you only want 1000 bytes from offset 100 to
avoid having to download the entire huge remote file:

curl --range 100-1099 http://example.com/bigfile

178



Uploads

Uploading is a term for sending data to a remote server. Uploading is done differently for
each protocol, and several protocols may even allow different ways of uploading data.

Protocols allowing upload
You can upload data using one of these protocols: FILE, FTP, FTPS, HTTP, HTTPS,
IMAP, IMAPS, SCP, SFTP, SMB, SMBS, SMTP, SMTPS and TFTP.

HTTP offers several uploads
HTTP, and its bigger brother HTTPS, offer several different ways to upload data to a
server and curl provides easy command-line options to do it the three most common ways,
described below.

An interesting detail with HTTP is also that an upload can also be a download, in the
same operation and in fact many downloads are initiated with an HTTP POST.

POST
POST is the HTTP method that was invented to send data to a receiving web application,
and it is, for example, how most common HTML forms on the web work. It usually sends
a chunk of relatively small amounts of data to the receiver.

The upload kind is usually done with the -d or --data options, but there are a few
additional alterations.

Read the detailed description on how to do this with curl in the HTTP POST with curl
chapter.

multipart formpost
Multipart formposts are also used in HTML forms on websites; typically when there is a
file upload involved. This type of upload is also an HTTP POST but it sends the data
formatted according to some special rules, which is what the multipart name means.

Since it sends the data formatted completely differently, you cannot select which type of
POST to use at your own whim but it entirely depends on what the receiving server end
expects and can handle.

HTTP multipart formposts are done with -F. See the detailed description in the HTTP
multipart formposts chapter.

179



180 UPLOADS

PUT
HTTP PUT is the upload method that was designed to send a complete resource meant to
be put as-is on the remote site or even replace an existing resource there. That said, this
is also the least used upload method for HTTP on the web today and lots, if not most,
web servers do not even have PUT enabled.

You send off an HTTP upload using the -T option with the file to upload:

curl -T uploadthis http://example.com/

FTP uploads
Working with FTP, you get to see the remote file system you are accessing. You tell the
server exactly in which directory you want the upload to be placed and which filename to
use. If you specify the upload URL with a trailing slash, curl appends the locally used
filename to the URL and then that becomes the filename used when stored remotely:

curl -T uploadthis ftp://example.com/this/directory/

So if you prefer to select a different filename on the remote side than what you have used
locally, you specify it in the URL:

curl -T uploadthis ftp://example.com/this/directory/remotename

Learn much more about FTPing in the FTP with curl section.

SMTP uploads
You may not consider sending an email to be uploading, but to curl it is. You upload the
mail body to the SMTP server. With SMTP, you also need to include all the mail headers
you need (To:, From:, Date:, etc.) in the mail body as curl does not add any at all.

curl -T mail smtp://mail.example.com/ --mail-from user@example.com

Learn more about using SMTP with curl in the Sending email section.

Progress meter for uploads
The general progress meter curl provides (see the Progress meter section) works fine for
uploads as well. What needs to be remembered is that the progress meter is automatically
disabled when you are sending output to stdout, and most protocols curl support can
output something even for an upload.

Therefore, you may need to explicitly redirect the downloaded data to a file (using shell
redirect ‘>’, -o or similar) to get the progress meter displayed for upload.



Transfer controls

curl offers several different knobs and levers to control how transfers are performed. How
fast to let them go, how slow to let them run and how to do multiple transfers.

• Stop slow transfers
• Rate limiting
• Request rate limiting

181



Stop slow transfers

Having a fixed maximum time for a curl operation can be cumbersome, especially if you,
for example, do scripted transfers and the file sizes and transfer times vary a lot. A fixed
timeout value then needs to be set unnecessarily high to cover for worst cases.

As an alternative to a fixed time-out, you can tell curl to abandon the transfer if it gets
below a certain speed and stays below that threshold for a specific period of time.

For example, if a transfer speed goes below 1000 bytes per second during 15 seconds, stop
it:

curl --speed-time 15 --speed-limit 1000 https://example.com/

182



Rate limiting

When curl transfers data, it attempts to do that as fast as possible. It goes for both
uploads and downloads. Exactly how fast that goes depends on several factors, including
your computer’s ability, your own network connection’s bandwidth, the load on the remote
server you are transferring to/from and the latency to that server. Your curl transfers are
also likely to compete with other transfers on the networks the data travels over, from
other users or just other apps by the same user.

In many setups, however, you can more or less saturate your own network connection
with a single curl command line. If you have a 10 megabit per second connection to the
Internet, chances are curl can use all of those 10 megabits to transfer data.

For most use cases, using as much bandwidth as possible is a good thing. It makes the
transfer faster, it makes the curl command complete sooner and it makes the transfer use
resources from the server for a shorter period of time.

Sometimes, having curl starve out other network functions on your local network connection
is inconvenient. In these situations you may want to tell curl to slow down so that other
network users get a better chance to get their data through as well. With --limit-rate
[speed] you can tell curl to not go faster than the given number of bytes per second. The
rate limit value can be given with a letter suffix using one of K, M and G for kilobytes,
megabytes and gigabytes.

To make curl not download data any faster than 200 kilobytes per second:

curl https://example.com/ --limit-rate 200K

The given limit is the maximum average speed allowed during a period of several seconds.
It means that curl might use higher transfer speeds in short bursts, but over time it
averages to no more than the given rate.

curl does not know what the maximum possible speed is — it simply goes as fast as it can
and is allowed. You might know your connection’s maximum speed, curl does not.

183



Request rate limiting

When told to do multiple transfer in a single command line, there might be times when a
user would like to rather have those multiple transfers done slower than as fast as possible.
We call that request rate limiting.

With the --rate option, you specify the maximum transfer frequency you allow curl to
use - in number of transfer starts per time unit (sometimes called request rate). Without
this option, curl starts the next transfer as fast as possible.

If given several URLs and a transfer completes faster than the allowed rate, curl delays
starting the next transfer to maintain the requested rate. This option is for serial transfers
and has no effect when –parallel is used.

The request rate is provided as N/U where N is an integer number and U is a time unit.
Supported units are s (second), m (minute), h (hour) and d (day, as in a 24 hour unit).
The default time unit, if no /U is provided, is number of transfers per hour.

If curl is told to allow 10 requests per minute, it does not start the next request until 6
seconds have elapsed since the previous transfer was started.

This function uses millisecond resolution. If the allowed frequency is set more than 1000
per second, it instead runs unrestricted.

When retrying transfers, enabled with –retry, the separate retry delay logic is used and
not this setting.

If this option is used several times, the last one is used.

For example, make curl download 100 images but doing it no faster than 2 transfers per
second:

curl --rate 2/s -O https://example.com/[1-100].jpg

Make curl download 10 images but doing it no faster than 3 transfers per hour:

curl --rate 3/h -O https://example.com/[1-10].jpg

Make curl download 200 images but not faster than 14 transfers per minute:

curl --rate 14/m -O https://example.com/[1-200].jpg

184



Connections

Most of the protocols you use with curl speak TCP. With TCP, a client such as curl must
first figure out the IP address(es) of the host you want to communicate with, then connect
to it. “Connecting to it” means performing a TCP protocol handshake.

For ordinary command line usage, operating on a URL, these are details which are taken
care of under the hood, and which you can mostly ignore. But at times you might find
yourself wanting to tweak the specifics. . .

• Name resolve tricks
• Connection timeout
• Network interface
• Local port number
• Keep alive

185



Name resolve tricks

curl offers many ways to make it use another host than the one it normally would connect
to.

Edit the hosts file
Maybe you want the command curl http://example.com to connect to your local server
instead of the actual server.

You can normally and easily do that by editing your hosts file (/etc/hosts on Linux
and Unix-like systems) and adding, for example, 127.0.0.1 example.com to redirect the
host to your localhost. However this edit requires admin access and it has the downside
that it affects all other applications at the same time.

Change the Host: header
The Host: header is the normal way an HTTP client tells the HTTP server which server
it speaks to, as typically an HTTP server serves many different names using the same
software instance.

So, by passing in a custom modified Host: header you can have the server respond with
the contents of the site even when you did not actually connect to that hostname.

For example, you run a test instance of your main site www.example.com on your local
machine and you want to have curl ask for the index html:

curl -H "Host: www.example.com" http://localhost/

When setting a custom Host: header and using cookies, curl extracts the custom name
and uses that as host when matching cookies to send off.

The Host: header is not enough when communicating with an HTTPS server. With
HTTPS there is a separate extension field in the TLS protocol called SNI (Server Name
Indication) that lets the client tell the server the name of the server it wants to talk to.
curl only extracts the SNI name to send from the given URL.

Provide a custom IP address for a name
Do you know better than the name resolver where curl should go? Then you can give
an IP address to curl yourself. If you want to redirect port 80 access for example.com to
instead reach your localhost:

186



PROVIDE A REPLACEMENT NAME 187

curl --resolve example.com:80:127.0.0.1 http://example.com/

You can even specify multiple --resolve switches to provide multiple redirects of this
sort, which can be handy if the URL you work with uses HTTP redirects or if you just
want to have your command line work with multiple URLs.

--resolve inserts the address into curl’s DNS cache, so it effectively makes curl believe
that is the address it got when it resolved the name.

When talking HTTPS, this sends SNI for the name in the URL and curl verifies the server’s
response to make sure it serves for the name in the URL.

The pattern you specify in the option needs be a hostname and its corresponding port
number and only if that exact pair is used in the URL is the address substituted. For
example, if you want to replace a hostname in an HTTPS URL on its default port number,
you need to tell curl it is for port 443, like:

curl --resolve example.com:443:192.168.0.1 https://example.com/

Provide a replacement name
As a close relative to the --resolve option, the --connect-to option provides a minor
variation. It allows you to specify a replacement name and port number for curl to use
under the hood when a specific name and port number is used to connect.

For example, suppose you have a single site called www.example.com that in turn is
actually served by three different individual HTTP servers: load1, load2 and load3, for
load balancing purposes. In a typical normal procedure, curl resolves the main site and
gets to speak to one of the load balanced servers (as it gets a list back and just picks one
of them) and all is well. If you want to send a test request to one specific server out of the
load balanced set (load1.example.com for example) you can instruct curl to do that.

You can still use --resolve to accomplish this if you know the specific IP address of load1.
But without having to first resolve and fix the IP address separately, you can tell curl:

curl --connect-to www.example.com:80:load1.example.com:80 \
http://www.example.com

It redirects from a SOURCE NAME + SOURCE PORT to a DESTINATION NAME +
DESTINATION PORT. curl then resolves the load1.example.com name and connects,
but in all other ways still assumes it is talking to www.example.com.

Name resolve tricks with c-ares
As should be detailed elsewhere in this book, curl may be built with several different name
resolving backends. One of those backends is powered by the c-ares library and when curl
is built to use c-ares, it gets a few extra superpowers that curl built to use other name
resolve backends do not get. Namely, it gains the ability to more specifically instruct what
DNS servers to use and how that DNS traffic is using the network.

With --dns-servers, you can specify exactly which DNS server curl should use instead
of the default one. This lets you run your own experimental server that answers differently,
or use a backup one if your regular one is unreliable or dead.



188 NAME RESOLVE TRICKS

With --dns-ipv4-addr and --dns-ipv6-addr you ask curl to “bind” its local end of the
DNS communication to a specific IP address and with --dns-interface you can instruct
curl to use a specific network interface to use for its DNS requests.

These --dns-* options are advanced and are only meant for people who know what they
are doing and understand what these options do. But they offer customizable DNS name
resolution operations.



Connection timeout

curl typically makes a TCP connection to the host as an initial part of its network transfer.
This TCP connection can fail or be slow, if there are shaky network conditions or faulty
remote servers.

To reduce the impact on your scripts or other use, you can set the maximum time in
seconds which curl allows for the connection attempt. With --connect-timeout you tell
curl the maximum time to allow for connecting, and if curl has not connected in that time
it returns a failure.

The connection timeout only limits the time curl is allowed to spend up until the moment
it connects, so once the TCP connection has been established it can take longer time. See
the Timeouts section for more on generic curl timeouts.

If you specify a low timeout, you effectively disable curl’s ability to connect to remote
servers, slow servers or servers you access over unreliable networks.

The connection timeout can be specified as a decimal value for sub-second precision. For
example, to allow 2781 milliseconds to connect:

curl --connect-timeout 2.781 https://example.com/

189



Network interface

On machines with multiple network interfaces that are connected to multiple networks,
there are situations where you can decide which network interface you would prefer the
outgoing network traffic to use. Or which originating IP address (out of the multiple ones
you have) to use in the communication.

Tell curl which network interface, which IP address or even hostname that you would like
to “bind” your local end of the communication to, with the --interface option:

curl --interface eth1 https://www.example.com/

curl --interface 192.168.0.2 https://www.example.com/

curl --interface machine2 https://www.example.com/

190



Local port number

A TCP connection is created between an IP address and a port number in the local end
and an IP address and a port number in the remote end. The remote port number can be
specified in the URL and usually helps identify which service you are targeting.

The local port number is usually randomly assigned to your TCP connection by the
network stack and you normally do not have to think about it much further. However,
in some circumstances you find yourself behind network equipment, firewalls or similar
setups that put restrictions on what source port numbers that can be allowed to set up
the outgoing connections.

For situations like this, you can specify which local ports curl should bind the connection
to. You can specify a single port number to use, or a range of ports. We recommend using
a range because ports are scarce resources and the exact one you want may already be in
use. If you ask for a local port number (or range) that curl cannot obtain for you, it exits
with a failure.

Also, on most operating systems you cannot bind to port numbers below 1024 without
having a higher privilege level (root) and we generally advise against running curl as root
if you can avoid it.

Ask curl to use a local port number between 4000 and 4200 when getting this HTTPS
page:

curl --local-port 4000-4200 https://example.com/

191



Keep alive

TCP connections can be totally without traffic in either direction when they are not used.
A totally idle connection can therefore not be clearly separated from a connection that
has gone completely stale because of network or server issues.

At the same time, lots of network equipment such as firewalls or NATs are keeping track of
TCP connections these days, so that they can translate addresses, block “wrong” incoming
packets, etc. These devices often count completely idle connections as dead after N minutes,
where N varies between device to device but at times is as short as 10 minutes or even less.

One way to help avoid a really slow connection (or an idle one) getting treated as dead and
wrongly killed, is to make sure TCP keep alive is used. TCP keepalive is a feature in the
TCP protocol that makes it send “ping frames” back and forth when it would otherwise
be totally idle. It helps idle connections to detect breakage even when no traffic is moving
over it, and helps intermediate systems not consider the connection dead.

curl uses TCP keepalive by default for the reasons mentioned here. But there might be
times when you want to disable keepalive or you may want to change the interval between
the TCP “pings” (curl defaults to 60 seconds). You can switch off keepalive with:

curl --no-keepalive https://example.com/

or change the interval to 5 minutes (300 seconds) with:

curl --keepalive-time 300 https://example.com/

192



Timeouts

Network operations are by their nature rather unreliable or perhaps fragile operations as
they depend on a set of services and networks to be up and working for things to work.
The availability of these services can come and go and the performance of them may also
vary greatly from time to time.

The design of TCP even allows the network to get completely disconnected for an extended
period of time without it necessarily getting noticed by the participants in the transfer.

The result of this is that sometimes Internet transfers take a long time. Further, most
operations in curl have no time-out by default.

Maximum time allowed to spend
Tell curl with -m / --max-time the maximum time, in seconds, that you allow the
command line to spend before curl exits with a timeout error code (28). When the set
time has elapsed, curl exits no matter what is going on at that moment—including if it is
transferring data. It really is the maximum time allowed.

The given maximum time can be specified with a decimal precision; 0.5 means 500
milliseconds and 2.37 equals 2370 milliseconds.

Example:

curl --max-time 5.5 https://example.com/

(Your locale may use another symbol than a dot for expressing numerical fractions.)

Never spend more than this to connect
--connect-timeout limits the time curl spends trying to connect to the host. All the
necessary steps done before the connection is considered complete have to be completed
within the given time frame. Failing to connect within the given time causes curl to exit
with a timeout exit code (28).

The steps done before a connect is considered successful include DNS lookup and subsequent
TCP, TLS or QUIC handshakes.

The given maximum connect time can be specified with a decimal precision; 0.5 means
500 milliseconds and 2.37 equals 2370 milliseconds:

curl --connect-timeout 2.37 https://example.com/

193



.netrc

Unix systems have for a long time offered a way for users to store their user name and
password for remote FTP servers. ftp clients have supported this for decades and this way
allowed users to quickly login to known servers without manually having to reenter the
credentials each time. The .netrc file is typically stored in a user’s home directory. (On
Windows, curl looks for it with the name _netrc).

This being a widespread and well used concept, curl also supports it—if you ask it to. curl
does not, however, limit this feature to FTP, but can get credentials for machines for any
protocol with this. See further below for how.

The .netrc file format
The .netrc file format is simple: you specify lines with a machine name and follow that
with the login and password that are associated with that machine.

Each field is provided as a sequence of letters that ends with a space or newline. Since
7.84.0, curl also supports quoted strings. They start and end with double quotes (") and
support the escaped special letters \", (newline), (carriage return), and (TAB). Quoted
strings are the only way a space character can be used in a user name or password.

machine name

Identifies a remote machine name. curl searches the .netrc file for a machine token that
matches the remote machine specified in the URL. Once a match is made, the subsequent
.netrc tokens are processed, stopping when the end of file is reached or another machine is
encountered.

default

This is the same as machine name except that default matches any name. There can
be only one default token, and it must be after all machine tokens. To provide a default
anonymous login for hosts that are not otherwise matched, add a line similar to this in
the end:

default login anonymous password user@domain

login name

The user name string for the remote machine. You cannot use a space in the name.

password string

Supply a password. If this token is present, curl supplies the specified string if the remote
server requires a password as part of the login process. Note that if this token is present

194



USER NAME MATCHING 195

in the .netrc file you really should make sure the file is not readable by anyone besides
the user. You cannot use a space when you enter the password.

macdef name

Define a macro. This is not supported by curl. In order for the rest of the .netrc to
still work fine, curl properly skips every definition done with macdef that it finds.

An example .netrc for the host example.com with a user named ‘daniel’, using the password
‘qwerty’ would look like:

machine example.com
login daniel
password qwerty

It can also be written on a single line with the same functionality:

machine example.com login daniel password qwerty

User name matching
When a URL is provided with a user name and .netrc is used, then curl tries to find the
matching password for that machine and login combination.

Enable netrc
-n, --netrc tells curl to look for and use the .netrc file.

--netrc-file [file] is similar to --netrc, except that you also provide the path to
the actual file to use. This is useful when you want to provide the information in another
directory or with another filename.

--netrc-optional is similar to --netrc, but this option makes the .netrc usage optional
and not mandatory as the --netrc option.



Proxies

A proxy is a machine or software that does something on behalf of you, the client.

You can also see it as a middle man that sits between you and the server you want to work
with, a middle man that you connect to instead of the actual remote server. You ask the
proxy to perform your desired operation for you and then it runs off and do that and then
it returns the data to you.

There are several different types of proxies and we shall list and discuss them in subsections
below.

• Discover your proxy
• PAC
• Captive portals
• Proxy type
• HTTP proxy
• SOCKS proxy
• MITM proxy
• Authentication
• HTTPS proxy
• Proxy environment variables
• Proxy headers
• haproxy

196



Discover your proxy

Some networks are setup to require a proxy in order for you to reach the Internet or
perhaps that special network you are interested in. The use of proxies are introduced on
your network by the people and management that run your network for policy or technical
reasons.

In the networking space there are a few methods for the automatic detection of proxies and
how to connect to them, but none of those methods are truly universal and curl supports
none of them. Furthermore, when you communicate to the outside world through a proxy
that often means that you have to put a lot of trust on the proxy as it is able to see and
modify all the non-secure network traffic you send or get through it. That trust is not
easy to assume automatically.

If you check your browser’s network settings, sometimes under an advanced settings tab,
you can learn what proxy or proxies your browser is configured to use. Chances are big
that you should use the same one or ones when you use curl.

As an example, you can find proxy settings for Firefox browser in Preferences => General
=> Network Settings as shown below:

197

https://support.mozilla.org/en-US/kb/connection-settings-firefox


198 DISCOVER YOUR PROXY

Figure 10: proxy settings for Firefox



PAC

Some network environments provides several different proxies that should be used in
different situations, and a customizable way to handle that is supported by the browsers.
This is called “proxy auto-config”, or PAC.

A PAC file contains a JavaScript function that decides which proxy a given network
connection (URL) should use, and even if it should not use a proxy at all. Browsers most
typically read the PAC file off a URL on the local network.

Since curl has no JavaScript capabilities, curl does not support PAC files. If your browser
and network use PAC files, the easiest route forward is usually to read the PAC file
manually and figure out the proxy you need to specify to run curl successfully.

199

https://en.wikipedia.org/wiki/Proxy_auto-config


Captive portals

These are not proxies but they are blocking the way between you and the server you want
to access.

A captive portal is one of these systems that are popular to use in hotels, airports and for
other sorts of network access to a larger audience. The portal captures all network traffic
and redirects you to a login webpage until you have either clicked OK and verified that
you have read their conditions or perhaps even made sure that you have paid plenty of
money for the right to use the network.

curl’s traffic is of course also captured by such portals and often the best way is to use a
browser to accept the conditions and get rid of the portal since from then on they often
allow all other traffic originating from that same machine (MAC address) for a period of
time.

Most often you can use curl too to submit that affirmation, if you just figure out how to
submit the form and what fields to include in it. If this is something you end up doing
many times, it may be worth exploring.

200



Proxy type

curl supports several different types of proxies.

The default proxy type is HTTP so if you specify a proxy hostname (or IP address) without
a scheme part (the part that is often written as http://) curl goes with assuming it is an
HTTP proxy.

curl provides a number of options to set the proxy type instead of using the scheme prefix.
See the SOCKS section.

201



HTTP proxy

An HTTP proxy is a proxy that the client speaks HTTP with to get the transfer done.
curl does by default, assume that a host you point out with -x or --proxy is an HTTP
proxy, and unless you also specify a port number it defaults to port 1080 (and the reason
for that particular port number is purely historical).

If you want to request the example.com webpage using a proxy on 192.168.0.1 port 8080,
a command line could look like:

curl -x 192.168.0.1:8080 http://example.com/

Recall that the proxy receives your request, forwards it to the real server, then reads the
response from the server and then hands that back to the client.

If you enable verbose mode with -v when talking to a proxy, it shows that curl connects
to the proxy instead of the remote server, and might see that it uses a slightly different
request line.

HTTPS with HTTP proxy
HTTPS was designed to allow and provide secure and safe end-to-end privacy from the
client to the server (and back). In order to provide that when speaking to an HTTP proxy,
the HTTP protocol has a special request that curl uses to setup a tunnel through the
proxy that it then can encrypt and verify. This HTTP method is known as CONNECT.

When the proxy tunnels encrypted data through to the remote server after a CONNECT
method sets it up, the proxy cannot see nor modify the traffic without breaking the
encryption:

curl -x proxy.example.com:80 https://example.com/

Non-HTTP protocols over an HTTP proxy
An HTTP proxy means the proxy itself speaks HTTP. HTTP proxies are primarily used
to proxy HTTP but it is also fairly common that they support other protocols as well. In
particular, FTP is fairly commonly supported.

When talking FTP over an HTTP proxy, it is usually done by more or less pretending the
other protocol works like HTTP and asking the proxy to get this URL even if the URL is
not using HTTP. This distinction is important because it means that when sent over an
HTTP proxy like this, curl does not really speak FTP even though given an FTP URL;
thus FTP-specific features do not work:

202



HTTP PROXY TUNNELING 203

curl -x http://proxy.example.com:80 ftp://ftp.example.com/file.txt

What you can do instead then, is to tunnel through the HTTP proxy.

HTTP proxy tunneling
Most HTTP proxies allow clients to tunnel through it to a server on the other side. That
is exactly what’s done every time you use HTTPS through the HTTP proxy.

You tunnel through an HTTP proxy with curl using -p or --proxytunnel.

When you do HTTPS through a proxy you normally connect through to the default HTTPS
remote TCP port number 443. Most HTTP proxies white list and allow connections only
to hosts on that port number and perhaps a few others. Most proxies deny clients from
connecting to just any random port (for reasons only the proxy administrators know).

Still, assuming that the HTTP proxy allows it, you can ask it to tunnel through to a
remote server on any port number so you can do other protocols normally even when
tunneling. You can do FTP tunneling like this:

curl -p -x http://proxy.example.com:80 ftp://ftp.example.com/file.txt

You can tell curl to use HTTP/1.0 in its CONNECT request issued to the HTTP proxy
by using --proxy1.0 [proxy] instead of -x.



SOCKS proxy

SOCKS is a protocol used for proxies and curl supports it. curl supports both SOCKS
version 4 as well as version 5, and both versions come in two flavors.

You can select the specific SOCKS version to use by using the correct scheme part for the
given proxy host with -x, or you can specify it with a separate option instead of -x.

SOCKS4 is for the version 4 but curl resolves the name:

curl -x socks4://proxy.example.com http://www.example.com/

curl --socks4 proxy.example.com http://www.example.com/

SOCKS4a is for the version 4 with resolving done by the proxy:

curl -x socks4a://proxy.example.com http://www.example.com/

curl --socks4a proxy.example.com http://www.example.com/

SOCKS5 is for the version 5 and SOCKS5-hostname is for the version 5 without resolving
the hostname locally:

curl -x socks5://proxy.example.com http://www.example.com/

curl --socks5 proxy.example.com http://www.example.com/

The SOCKS5-hostname versions. This sends the hostname to the proxy so there is no
name resolving done by curl locally:

curl -x socks5h://proxy.example.com http://www.example.com/

curl --socks5-hostname proxy.example.com http://www.example.com/

Helpful table to figure how which side that resolves the name for which socks version:

SOCKS who resolves the name works with IPv6
4 curl no
4a proxy no
5 curl yes
5h proxy yes

204



MITM proxy

MITM means Man-In-The-Middle. MITM proxies are usually deployed by companies in
“enterprise environments” and elsewhere, where the owners of the network have a desire to
investigate even TLS encrypted traffic.

To do this, they require users to install a custom “trust root” (Certificate Authority
(CA) certificate) in the client, and then the proxy terminates all TLS traffic from the
client, impersonates the remote server and acts like a proxy. The proxy then sends back a
generated certificate signed by the custom CA. Such proxy setups usually transparently
capture all traffic from clients to TCP port 443 on a remote machine. Running curl in
such a network would also get its HTTPS traffic captured.

This practice, of course, allows the middle man to decrypt and snoop on all TLS traffic.

205



Proxy authentication

HTTP and SOCKS proxies can require authentication, so curl then needs to provide the
proper credentials to the proxy to be allowed to use it. Failing to do so (or providing the
wrong credentials) makes the proxy return HTTP responses using code 407.

Authentication for proxies is similar to “normal” HTTP authentication. It is separate
from the server authentication to allow clients to independently use both normal host
authentication as well as proxy authentication.

With curl, you set the user name and password for the proxy authentication with the -U
user:password or --proxy-user user:password option:

curl -U daniel:secr3t -x myproxy:80 http://example.com

This example defaults to using the Basic authentication scheme. Some proxies requires
other authentication schemes (and the headers that are returned when you get a 407
response tells you which) and then you can ask for a specific method with --proxy-digest,
--proxy-negotiate, --proxy-ntlm. The above example command again, but asking for
NTLM auth with the proxy:

curl -U daniel:secr3t -x myproxy:80 http://example.com --proxy-ntlm

There is also the option that asks curl to figure out which method the proxy wants and
supports and then go with that (with the possible expense of extra round-trips) using
--proxy-anyauth. Asking curl to use any method the proxy wants is then like this:

curl -U daniel:secr3t -x myproxy:80 http://example.com --proxy-anyauth

206



HTTPS proxy

All the other mentioned protocols to speak with the proxy are clear text protocols, HTTP
and the SOCKS versions. Using those methods could allow someone to eavesdrop on
your traffic the local network where you or the proxy reside. Because over the connection
between curl and the proxy, the data is sent in the clear.

One solution for that is to use an HTTPS proxy, speaking HTTPS to the proxy, which
then establishes a secure and encrypted connection that is safe from easy surveillance.

When an HTTPS proxy is specified, the default port used on that host is 443.

In most other ways, HTTPS proxies work like HTTP proxies.

HTTP/2
When curl speaks with an HTTPS proxy, you have the option to use --proxy-http2 to a
ask curl to try using HTTP/2 with the proxy.

By default, curl speaks HTTP/1.1 with HTTPS proxies, but if this option is used curl
attempts to negotiate and use HTTP/2 instead.

207



Proxy environment variables

curl checks for the existence of specially named environment variables before it runs to see
if a proxy is requested to get used.

You specify the proxy by setting a variable named [scheme]_proxy to hold the proxy
hostname (the same way you would specify the host with -x). If you want to tell curl to
use a proxy when access an HTTP server, you set the http_proxy environment variable.
Like this:

http_proxy=http://proxy.example.com:80
curl -v www.example.com

While the above example shows HTTP, you can, of course, also set ftp_proxy,
https_proxy, and so on. All these proxy environment variable names except http_proxy
can also be specified in uppercase, like HTTPS_PROXY.

To set a single variable that controls all protocols, the ALL_PROXY exists. If a specific
protocol variable one exists, such a one takes precedence.

No proxy

You sometimes end up in a situation where one or a few host names should be excluded
from going through the proxy that normally would be used. This is then done with the
NO_PROXY variable. Set that to a comma- separated list of host names that should not use
a proxy when being accessed. You can set NO_PROXY to be a single asterisk (‘*’) to match
all hosts.

If a name in the exclusion list starts with a dot (.), then the name matches that
entire domain. For example .example.com matches both www.example.com and
home.example.com but not nonexample.com.

As an alternative to the NO_PROXY variable, there is also a --noproxy command line option
that serves the same purpose and works the same way.

Since curl 7.86.0, a user can exclude an IP network using the CIDR notation: append a
slash and number of bits to an IP address to specify the bit size of the network to match.
For example, match the entire 16 bit network starting with 192.168 by providing the
pattern 192.168.0.0/16.

208



HTTP_PROXY IN LOWER CASE ONLY 209

http_proxy in lower case only
The HTTP version of the proxy environment variables is treated differently than the
others. It is only accepted in its lower case version because of the CGI protocol, which
lets users run scripts in a server when invoked by an HTTP server. When a CGI script is
invoked by a server, it automatically creates environment variables for the script based
on the incoming headers in the request. Those environment variables are prefixed with
uppercase HTTP_.

An incoming request to an HTTP server using a request header like Proxy: yada therefore
creates the environment variable HTTP_PROXY set to contain yada before the CGI script is
started. If such a CGI script runs curl, it is important that curl does not treat that as a
proxy to use.

Accepting the upper case version of this environment variable has been the source for
many security problems in lots of software through times.



Proxy headers

When you want to add HTTP headers meant specifically for an HTTP or HTTPS proxy,
and not for the remote server, the --header option falls short.

For example, if you issue an HTTPS request through an HTTP proxy, it is done by first
issuing a CONNECT to the proxy that establishes a tunnel to the remote server and then it
sends the request to that server. That first CONNECT is only issued to the proxy and you
may want to make sure only that receives your special header, and send another set of
custom headers to the remote server.

Set a specific different User-Agent: only to the proxy:

curl --proxy-header "User-Agent: magic/3000" -x proxy https://example.com/

210



haproxy

The haproxy protocol, while still having proxy in its name, is different than other proxy
options and does not work with proxies in the same way the other proxy options do.

This is a way for a client to pass its IP address to the server in spite of how the traffic reaches
it: tunnels, TCP proxies, load balancers, transparent proxies and what not. Services that
somehow change what source IP address that is being used when the traffic ends up in the
server, making it impossible for the server to figure out the IP address of the client by
itself.

The haproxy protocol is simple. It needs to be supported by the server, meaning a user
cannot just decide to use it with an unwilling or uncooperative server. If it does support
it, you can tell curl to use it to pass on its own IP address to the server.

curl and haproxy
curl only supports the haproxy protocol v1.

To pass on the actual IP address of the connection that is being used right now, simply
add the boolean flag like this:

curl --haproxy-protocol https://example.com/

If such a command line for some reason does not provide the IP address you think it
should pass on, you can specify the exact address yourself, using either an IPv4 or an IPv6
numerical address:

curl --haproxy-clientip 10.0.0.1 https://example.com/
curl --haproxy-clientip fe80::fea3:8a22 https://example.com/

211



TLS

TLS stands for Transport Layer Security and is the name for the technology that was
formerly called SSL. The term SSL has not really died though so these days both the
terms TLS and SSL are often used interchangeably to describe the same thing.

TLS is a cryptographic security layer “on top” of TCP that makes the data tamper proof
and guarantees server authenticity, based on strong public key cryptography and digital
signatures.

• Ciphers
• Enable TLS
• TLS versions
• Verifying server certificates
• Certificate pinning
• OCSP stapling
• Client certificates
• TLS auth
• TLS backends
• SSLKEYLOGFILE

212



Ciphers

When curl connects to a TLS server, it negotiates how to speak the protocol and that
negotiation involves several parameters and variables that both parties need to agree to.
One of the parameters is which cryptography algorithms to use, the so called cipher. Over
time, security researchers figure out flaws and weaknesses in existing ciphers and they are
gradually phased out over time.

Using the verbose option, -v, you can get information about which cipher and TLS version
are negotiated. By using the --ciphers option, you can change what cipher to prefer in
the negotiation, but mind you, this is a power feature that takes knowledge to know how
to use in ways that do not just make things worse.

213



Enable TLS

curl supports the TLS version of many protocols. HTTP has HTTPS, FTP has FTPS,
LDAP has LDAPS, POP3 has POP3S, IMAP has IMAPS and SMTP has SMTPS.

If the server side supports it, you can use the TLS version of these protocols with curl.

There are two general approaches to do TLS with protocols. One of them is to speak TLS
already from the first connection handshake while the other is to upgrade the connection
from plain-text to TLS using protocol specific instructions.

With curl, if you explicitly specify the TLS version of the protocol (the one that has a
name that ends with an ‘S’ character) in the URL, curl tries to connect with TLS from
start, while if you specify the non-TLS version in the URL you can usually upgrade the
connection to TLS-based with the --ssl option.

The support table looks like this:

Clear TLS version –ssl
HTTP HTTPS no
LDAP LDAPS no
FTP FTPS yes
POP3 POP3S yes
IMAP IMAPS yes
SMTP SMTPS yes

The protocols that can do --ssl all favor that method. Using --ssl means that curl
attempts to upgrade the connection to TLS but if that fails, it still continues with the
transfer using the plain-text version of the protocol. To make the --ssl option require
TLS to continue, there is instead the --ssl-reqd option which makes the transfer fail if
curl cannot successfully negotiate TLS.

Require TLS security for your FTP transfer:

curl --ssl-reqd ftp://ftp.example.com/file.txt

Suggest TLS to be used for your FTP transfer:

curl --ssl ftp://ftp.example.com/file.txt

Connecting directly with TLS (to HTTPS://, LDAPS://, FTPS:// etc) means that TLS is
mandatory and curl returns an error if TLS is not negotiated.

Get a file over HTTPS:

214



215

curl https://www.example.com/



TLS versions

SSL was invented in the mid 90s and has developed ever since. SSL version 2 was the first
widespread version used on the Internet but that was deemed insecure already a long time
ago. SSL version 3 took over from there, and it too has been deemed not safe enough for
use.

TLS version 1.0 was the first standard. RFC 2246 was published 1999. TLS 1.1 came out
in 2006, further improving security, followed by TLS 1.2 in 2008. TLS 1.2 came to be the
gold standard for TLS for a decade.

TLS 1.3 (RFC 8446) was finalized and published as a standard by the IETF in August
2018. This is the most secure and fastest TLS version as of date. It is however so new
that a lot of software, tools and libraries do not yet support it.

curl is designed to use a secure version of SSL/TLS by default. It means that it does not
negotiate SSLv2 or SSLv3 unless specifically told to, and in fact several TLS libraries no
longer provide support for those protocols so in many cases curl is not even able to speak
those protocol versions unless you make a serious effort.

Option Use
–sslv2 SSL version 2
–sslv3 SSL version 3
–tlsv1 TLS >= version 1.0
–tlsv1.0 TLS >= version 1.0
–tlsv1.1 TLS >= version 1.1
–tlsv1.2 TLS >= version 1.2
–tlsv1.3 TLS >= version 1.3

216



Verifying server certificates

Having a secure connection to a server is not worth a lot if you cannot also be certain
that you are communicating with the correct host. If we do not know that, we could just
as well be talking with an impostor that just appears to be who we think it is.

To check that it communicates with the right TLS server, curl uses a CA store - a set of
certificates to verify the signature of the server’s certificate. All servers provide a certificate
to the client as part of the TLS handshake and all public TLS-using servers have acquired
that certificate from an established Certificate Authority.

After some applied crypto magic, curl knows that the server is in fact the correct one that
acquired that certificate for the hostname that curl used to connect to it. Failing to verify
the server’s certificate is a TLS handshake failure and curl exits with an error.

In rare circumstances, you may decide that you still want to communicate with a TLS server
even if the certificate verification fails. You then accept the fact that your communication
may be subject to Man-In-The-Middle attacks. You lower your guards with the -k or
--insecure option.

Native CA stores
Operating systems like Windows and macOS tend to have their own CA stores.

If you run curl with Schannel on Windows, curl uses Windows’ own CA store by default.

If you run curl with Secure Transport on macOS, curl uses macOS’ own CA store by
default.

If you use curl with any other TLS backend than Schannel or Secure Transport, it uses a
CA store provided in a separate file or directory, independently of the native CA store.
However, for some of them you can still ask curl to instead prefer the native CA store
using the --ca-native command line option. This option is supported with OpenSSL
(and forks), wolfSSL and GnuTLS.

For HTTPS proxies, the corresponding option is called --proxy-ca-native.

CA store in file(s)
If curl is not built to use a TLS library that is native to your platform (like Schannel or
Secure Transport), it has to either have been built to know where the local CA store is, or
users need to provide a path to the CA store when curl is invoked.

217



218 VERIFYING SERVER CERTIFICATES

You can point out a specific CA bundle to use in the TLS handshake with the --cacert
command line option. That bundle needs to be in PEM format. You can also set the
environment variable CURL_CA_BUNDLE to the full path.

CA store on windows
curl built on windows that is not using the native TLS library (Schannel), have an extra
sequence for how the CA store can be found and used.

curl searches for a CA cert file named curl-ca-bundle.crt in these directories and in
this order:

1. application’s directory
2. current working directory
3. Windows System directory (e.g. C:\windows\system32)
4. Windows Directory (e.g. C:\windows)
5. all directories along %PATH%



Certificate pinning

TLS certificate pinning is a way to verify that the public key used to sign the servers
certificate has not changed. It is pinned.

When negotiating a TLS or SSL connection, the server sends a certificate indicating its
identity. A public key is extracted from this certificate and if it does not exactly match the
public key provided to this option, curl aborts the connection before sending or receiving
any data.

You tell curl a filename to read the sha256 value from, or you specify the base64 encoded
hash directly in the command line with a sha256// prefix. You can specify one or more
hashes like that, separated with semicolons (;).

curl --pinnedpubkey "sha256//83d34tasd3rt..." https://example.com/

This feature is not supported by all TLS backends.

219



OCSP stapling

This uses the TLS extension called Certificate Status Request to ask the server to provide
a fresh “proof” from the CA in the handshake, that the certificate that it returns is still
valid. This is a way to make really sure the server’s certificate has not been revoked.

If the server does not support this extension, the test fails and curl returns an error. It is
still common that servers do not support this.

Ask for the handshake to use the status request like this:

curl --cert-status https://example.com/

This feature is only supported by the OpenSSL and GnuTLS backends.

220



Client certificates

TLS client certificates are a way for clients to cryptographically prove to servers that they
are truly the right peer (also sometimes known as Mutual TLS or mTLS). A command
line that uses a client certificate specifies the certificate and the corresponding key, and
they are then passed on the TLS handshake with the server.

You need to have your client certificate already stored in a file when doing this and you
should supposedly have gotten it from the right instance via a different channel previously.

The key is typically protected by a password that you need to provide or get prompted for
interactively.

curl offers options to let you specify a single file that is both the client certificate and the
private key concatenated using --cert, or you can specify the key file independently with
--key:

curl --cert mycert:mypassword https://example.com
curl --cert mycert:mypassword --key mykey https://example.com

For some TLS backends you can also pass in the key and certificate using different types:

curl --cert mycert:mypassword --cert-type PEM \
--key mykey --key-type PEM https://example.com

221



TLS auth

TLS connections offer a (rarely used) feature called Secure Remote Passwords. Using
this, you authenticate the connection for the server using a name and password and the
command line flags for this are --tlsuser <name> and --tlspassword <secret>. Like
this:

curl --tlsuser daniel --tlspassword secret https://example.com

222



TLS backends

When curl is built, it gets told to use a specific TLS library. That TLS library is the
engine that provides curl with the powers to speak TLS over the wire. We often refer to
them as different “backends” as they can be seen as different pluggable pieces into the
curl machine. curl can be built to be able to use one or more of these backends.

Sometimes features and behaviors differ slightly when curl is built with different TLS back-
ends, but the developers work hard on making those differences as small and unnoticeable
as possible.

Showing the curl version information with curl –version includes the TLS library and
version in the first line of output.

Multiple TLS backends
When curl is built with multiple TLS backends, it can be told which one to use each time
it is started. It is always built to use a specific one by default unless one is asked for.

If you invoke curl --version for a curl with multiple backends it mentions MultiSSL as
a feature in the last line. The first line includes all the supported TLS backends with the
non-default ones within parentheses.

To set a specific one to get used, set the environment variable CURL_SSL_BACKEND to its
name.

223



SSLKEYLOGFILE

Figure 11: view network traffic with Wireshark

Since a long time back, the venerable network analyzer tool Wireshark (screenshot above)
has provided a way to decrypt and inspect TLS traffic when sent and received by Firefox
and Chrome.

This is similarly possible to do with curl.

You do this by making the browser or curl tell Wireshark the encryption secrets so that it
can decrypt them:

224



LIBCURL-USING APPLICATIONS TOO 225

1. set the environment variable named SSLKEYLOGFILE to a filename of your choice
before you start the browser or curl

2. Setting the same filename path in the Master-secret field in Wireshark. Go to
Preferences->Protocols->TLS and edit the path as shown in the screenshot below.

Figure 12: set the ssl key filename

Having done this simple operation, you can now inspect curl’s or your browser’s HTTPS
traffic in Wireshark. Just super handy and awesome.

Just remember that if you record TLS traffic and want to save it for analyzing later, you
need to also save the file with the secrets so that you can decrypt that traffic capture at a
later time as well.

libcurl-using applications too
Support for SSLKEYLOGFILE is provided by libcurl itself - making it possible for you to
trace and inspect the TLS network data for any application built to use libcurl - not just
the curl command line tool.

Restrictions
The support for SSLKEYLOGFILE requires that curl was built with a TLS backend that
supports this feature. The backends that support SSLKEYLOGFILE are: OpenSSL,



226 SSLKEYLOGFILE

libressl, BoringSSL, GnuTLS and wolfSSL.

If curl was built to use another backend, you cannot record your curl TLS traffic this way.



SCP and SFTP

curl supports the SCP and SFTP protocols if built with a prerequisite 3rd party library:
libssh2, libssh or wolfSSH.

SCP and SFTP are both protocols that are built on top of SSH, a secure and encrypted
data protocol that is similar to TLS but differs in a few important ways. For example,
SSH does not use certificates of any sort but instead it uses public and private keys. Both
SSH and TLS provide strong crypto and secure transfers when used correctly.

The SCP protocol is generally considered to be the black sheep of the two since it is not
portable and usually only works between Unix systems.

URLs
SFTP and SCP URLs are similar to other URLs and you download files using these
protocols the same as with others:

curl sftp://example.com/file.zip -u user

and:

curl scp://example.com/file.zip -u user

SFTP (but not SCP) supports getting a file listing back when the URL ends with a trailing
slash:

curl sftp://example.com/ -u user

Note that both these protocols work with “users” and you do not ask for a file anonymously
or with a standard generic name. Most systems require that users authenticate, as outlined
below.

When requesting a file from an SFTP or SCP URL, the file path given is considered to be
the absolute path on the remote server unless you specifically ask for the path relative to
the user’s home directory. You do that by making sure the path starts with /~/. This is
quite the opposite to how FTP URLs work and is a common cause for confusion among
users.

For user daniel to transfer todo.txt from his home directory, it would look similar to
this:

curl sftp://example.com/~/todo.txt -u daniel

227

https://www.libssh2.org/
https://www.libssh.org/
https://www.wolfssl.com/products/wolfssh/


228 SCP AND SFTP

Authentication
Authentication with curl against an SSH server (when you specify an SCP or SFTP URL)
is done like this:

1. curl connects to the server and learns which authentication methods that this server
offers

2. curl then tries the offered methods one by one until one works or they all failed

curl attempts to use your public key as found in the .ssh subdirectory in your home
directory if the server offers public key authentication. When doing so, you still need to
tell curl which user name to use on the server. For example, the user ‘john’ lists the entries
in his home directory on the remote SFTP server called ‘sftp.example.com’:

curl -u john: sftp://sftp.example.com/

If curl cannot authenticate with the public key for any reason, it instead attempts to use
the user name + password if the server allows it and the credentials are passed on the
command line.

For example, the same user from above has the password RHvxC6wUA on a remote system
and can download a file via SCP like this:

curl -u john:RHvxC6wUA -O scp://ssh.example.com/file.tar.gz

Known hosts
A secure network client needs to make sure that the remote host is exactly the host that
it thinks it is communicating with. With TLS based protocols, it is done by the client
verifying the server’s certificate.

With SSH protocols there are no server certificates, but instead each server can provide
its unique key. Unlike TLS, SSH has no certificate authorities or anything so the client
simply has to make sure that the host’s key matches what it already knows (via other
means) it should look like.

The matching of keys is typically done using hashes of the key and the file that the client
stores the hashes for known servers is often called known_hosts and is put in a dedicated
SSH directory. On Linux systems that is usually called ~/.ssh.

When curl connects to a SFTP and SCP host, it makes sure that the host’s key hash is
already present in the known hosts file or it denies continued operation because it cannot
trust that the server is the right one. Once the correct hash exists in known_hosts curl
can perform transfers.

To force curl to skip checking and obeying to the known_hosts file, you can use the -k /
--insecure command-line option. You must use this option with extreme care since it
makes it possible for man-in-the-middle attacks not to be detected.



Reading email

There are two dominant protocols on the Internet for reading/downloading email from
servers (at least if we do not count web based reading), and they are IMAP and POP3.
The former being the slightly more modern alternative. curl supports both.

POP3
To list message numbers and sizes:

curl pop3://mail.example.com/

To download message 1:

curl pop3://mail.example.com/1

To delete message 1:

curl --request DELE pop3://mail.example.com/1

IMAP
Get the mail using the UID 57 from mailbox ‘stuff’:

curl imap://server.example.com/stuff;UID=57

Instead, get the mail with index 57 from the mailbox ‘fun’:

curl imap://server.example.com/fun;MAILINDEX=57

List the mails in the mailbox ‘boring’:

curl imap://server.example.com/boring

List the mails in the mailbox ‘boring’ and provide user and password:

curl imap://server.example.com/boring -u user:password

TLS for emails
POP3 and IMAP can both be done over a secure connection and both can be done using
either explicit or implicit TLS. The “explicit” method is probably the most common
approach and it means that the client connects to the server using an insecure connection
and upgrades it to TLS as it goes, using the STARTTLS command. You tell curl to attempt

229



230 READING EMAIL

this with --ssl or if you want to insist on a secure connection you use --ssl-reqd. Like
this:

curl pop3://mail.example.com/ --ssl-reqd

or

curl --ssl imap://mail.example.com/inbox

“Implicit” SSL means that the connection gets secured already at first connect, which you
make curl attempt by specifying a scheme in the URL that uses SSL. In this case either
pop3s:// or imaps://. For such connections, curl insists on connecting and negotiating a
TLS connection already from the start, or it fails its operation.

The previous explicit examples done with implicit SSL:

curl pop3s://mail.example.com/

or

curl imaps://mail.example.com/inbox



Sending email

Sending email with curl is done with the SMTP protocol. SMTP stands for Simple Mail
Transfer Protocol.

curl supports sending data to an SMTP server, which combined with the right set of
command line options makes an email get sent to a set of receivers of your choice.

When sending SMTP with curl, there are two necessary command line options that must
be used.

• You need to tell the server at least one recipient with --mail-rcpt. You can use
this option several times and then curl tells the server that all those email addresses
should receive the email.

• You need to tell the server which email address that is the sender of the email with
--mail-from. It is important to realize that this email address is not necessarily
the same as is shown in the From: line of the email text.

Then, you need to provide the actual email data. This is a (text) file formatted according
to RFC 5322. It is a set of headers and a body. Both the headers and the body need to
be correctly encoded. The headers typically include To:, From:, Subject:, Date: etc.

A basic command to send an email:

curl smtp://mail.example.com --mail-from myself@example.com --mail-rcpt \
receiver@example.com --upload-file email.txt

An example email.txt could look like this:

From: John Smith <john@example.com>
To: Joe Smith <smith@example.com>
Subject: an example.com example email
Date: Mon, 7 Nov 2016 08:45:16

Dear Joe,
Welcome to this example email. What a lovely day.

Secure mail transfer
Some mail providers allow or require using SSL for SMTP. They may use a dedicated port
for SSL or allow SSL upgrading over a clear-text connection.

If your mail provider has a dedicated SSL port you can use smtps:// instead of smtp://,
which uses the SMTP SSL port of 465 by default and requires the entire connection to be

231

https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
https://tools.ietf.org/html/rfc5322.html


232 SENDING EMAIL

SSL. For example smtps://smtp.gmail.com/.

However, if your provider allows upgrading from clear-text to secure transfers you can use
one of these options:

--ssl Try SSL/TLS (FTP, IMAP, POP3, SMTP)
--ssl-reqd Require SSL/TLS (FTP, IMAP, POP3, SMTP)

You can tell curl to try but not require upgrading to secure transfers by adding --ssl to
the command:

curl --ssl smtp://mail.example.com --mail-from myself@example.com \
--mail-rcpt receiver@example.com --upload-file email.txt \
--user ’user@your-account.com:your-account-password’

You can tell curl to require upgrading to using secure transfers by adding --ssl-reqd to
the command:

curl --ssl-reqd smtp://mail.example.com --mail-from myself@example.com \
--mail-rcpt receiver@example.com --upload-file email.txt \
--user ’user@your-account.com:your-account-password’

The SMTP URL
The path part of a SMTP request specifies the hostname to present during communication
with the mail server. If the path is omitted then curl attempts to figure out the local
computer’s hostname and use that. However, this may not return the fully qualified
domain name that is required by some mail servers and specifying this path allows you to
set an alternative name, such as your machine’s fully qualified domain name, which you
might have obtained from an external function such as gethostname or getaddrinfo.

To connect to the mail server at mail.example.com and send your local computer’s
hostname in the HELO or EHLO command:

curl smtp://mail.example.com

You can of course as always use the -v option to get to see the client-server communication.

To instead have curl send client.example.com in the HELO / EHLO command to the mail
server at mail.example.com, use:

curl smtp://mail.example.com/client.example.com

No MX lookup!
When you send email with an ordinary mail client, it first checks for an MX record for the
particular domain you want to send email to. If you send an email to joe@example.com,
the client gets the MX records for example.com to learn which mail server(s) to use when
sending email to example.com users.

curl does no MX lookups by itself. If you want to figure out which server to send an email
to for a particular domain, we recommend you figure that out first and then call curl to use
those servers. Useful command line tools to get MX records include ‘dig’ and ‘nslookup’.



DICT

DICT is a protocol for dictionary lookups.

Usage
For fun try

curl dict://dict.org/m:curl
curl dict://dict.org/d:heisenbug:jargon
curl dict://dict.org/d:daniel:gcide

Aliases for ‘m’ are ‘match’ and ‘find’, and aliases for ‘d’ are ‘define’ and ‘lookup’. For
example,

curl dict://dict.org/find:curl

Commands that break the URL description of the RFC (but not the DICT protocol) are

curl dict://dict.org/show:db
curl dict://dict.org/show:strat

233



IPFS

IPFS is the Inter-Planetary File System. curl supports IPFS only via an HTTP gateway.
It means that it understands IPFS URLs when given to it, but you must also provide a
working gateway URL for curl to use to retrieve the content. curl does not speak IPFS
natively.

Gateway
The --ipfs-gateway lets the user specify the IPFS HTTP gateway URL. Like this:

curl --ipfs-gateway http://localhost:8080 ipfs://bafybeigagd5nmnn2iys2f3d/

If you opt to go for a remote gateway you should be aware that you completely trust the
gateway. This is fine in local gateways as you host it yourself. With remote gateways
there could potentially be a malicious actor returning you data that does not match the
request you made, inspect or even interfere with the request. You might not notice this
when getting IPFS using curl.

If the --ipfs-gateway option is not used, curl checks the IPFS_GATEWAY environment
variable for guidance and if not set, the ~/.ipfs/gateway file that can be used to identify
the gateway.

IPFS support was first added to curl in version 8.4.0.

234



MQTT

A plain GET subscribes to the topic and prints all published messages. Doing a POST
publishes the post data to the topic and exits.

Subscribe to the temperature in the home/bedroom subject published by example.com:

curl mqtt://example.com/home/bedroom/temp

Send the value 75 to the home/bedroom/dimmer subject hosted by the example.com server:

curl -d 75 mqtt://example.com/home/bedroom/dimmer

What does curl deliver as a response to a subscribe
It outputs two bytes topic length (MSB | LSB), the topic followed by the payload.

Caveats
Remaining limitations in curl’s MQTT support as of September 2022:

• Only QoS level 0 is implemented for publish
• No way to set retain flag for publish
• No TLS (mqtts) support

235



TELNET

Telnet is an ancient application protocol for bidirectional clear-text communication. It
was designed for interactive text-oriented communications and there is no encrypted or
secure version of Telnet.

TELNET is not a perfect match for curl. The protocol is not done to handle plain uploads
or downloads so the usual curl paradigms have had to be stretched somewhat to make
curl deal with it appropriately.

curl sends received data to stdout and it reads input to send on stdin. The transfer is
complete when the connection is dropped or when the user presses control-c.

Historic TELNET
Once upon the time, systems provided telnet access for login. Then you could connect to
a server and login to it, much like how you would do it with SSH today. That practice has
fortunately now mostly been moved into the museum cabinets due to the insecure nature
of the protocol.

The default port number for telnet is 23.

Debugging with TELNET
The fact that TELNET is basically just a simple clear-text TCP connection to the target
host and port makes it somewhat useful to debug other protocols and services at times.

Example, connect to your local HTTP server on port 80 and send a (broken) request to it
by manually entering GET / and press return twice:

curl telnet://localhost:80

Your web server most probably returns something like this back:

HTTP/1.1 400 Bad Request
Date: Tue, 07 Dec 2021 07:41:16 GMT
Server: softeare/7.8.9
Content-Length: 31
Connection: close
Content-Type: text/html

[message]

236



OPTIONS 237

Options
When curl sets up a TELNET connection to a server, you can ask it to pass on options.
You do this with --telnet-option (or -t), and there are three options available to use:

• TTYPE=<term> sets the “terminal type” for the session to be <term>.
• XDISPLOC=<X display> sets the X display location
• NEW_ENV=<var,val> sets the environment variable var to the value val in the remote

session

Login to your local machine’s telnet server and tell it you use a vt100 terminal:

curl --telnet-option TTYPE=vt100 telnet://localhost

You need to manually enter your name and password when prompted.



TFTP

Trivial File Transfer Protocol (TFTP) is a simple clear-text protocol that allows a client
to get a file from or put a file onto a remote host.

Primary use cases for this protocol have been to get the boot image over a local network.
TFTP also stands out a little next to many other protocols by the fact that it is done over
UDP as opposed to TCP which most other protocols use.

There is no secure version or flavor of TFTP.

Download
Download a file from the TFTP server of choice:

curl -O tftp://localserver/file.boot

Upload
Upload a file to the TFTP server of choice:

curl -T file.boot tftp://localserver/

TFTP options
The TFTP protocols transmits data to the other end of the communication using “blocks”.
When a TFTP transfer is setup, both parties either agree on using the default block size of
512 bytes or negotiate a different one. curl supports block sizes between 8 to 65464 bytes.

You ask curl to use a different size than the default with --tftp-blksize. Ask for 8192
bytes blocks like this:

curl --tftp-blksize 8192 tftp://localserver/file

It has been shown that there are server implementations that do not handle option
negotiation at all, so curl also has the ability to completely switch off all attempts of
setting options. If you are in the unfortunate of working with such a server, use the flag
like this:

curl --tftp-no-options tftp://localserver/file

238



Command line HTTP

In all user surveys and during all curl’s lifetime, HTTP has been the most important
and most frequently used protocol that curl supports. This chapter explains how to do
effective HTTP transfers and general fiddling with curl.

This mostly works the same way for HTTPS, as they are really the same thing under the
hood, as HTTPS is HTTP with an extra security TLS layer. See also the specific HTTPS
section.

• Method
• Responses
• Authentication
• Ranges
• HTTP versions
• Conditionals
• HTTPS
• HTTP POST
• Redirects
• Modify the HTTP request
• HTTP PUT
• Cookies
• Alternative Services
• HSTS
• Scripting browser-like tasks

239



Method

In every HTTP request, there is a method. Sometimes called a verb. The most commonly
used ones are GET, POST, HEAD and PUT.

Normally however you do not specify the method in the command line, but instead the
exact method used depends on the specific options you use. GET is default, using -d or -F
makes it a POST, -I generates a HEAD and -T sends a PUT.

More about this in the Modify the HTTP request section.

240



Responses

When an HTTP client talks HTTP to a server, the server responds with an HTTP response
message or curl considers it an error and returns 52 with the error message Empty reply
from server.

Size of an HTTP response
An HTTP response has a certain size and curl needs to figure it out. There are several
different ways to signal the end of an HTTP response but the most basic way is to use
the Content-Length: header in the response and with that specify the exact number of
bytes in the response body.

Some early HTTP server implementations had problems with file sizes greater than 2GB
and wrongly managed to send Content-Length: headers with negative sizes or otherwise
just plain wrong data. curl can be told to ignore the Content-Length: header completely
with --ignore-content-length. Doing so may have some other negative side-effects but
should at least let you get the data.

HTTP response codes
An HTTP transfer gets a 3 digit response code back in the first response line. The response
code is the server’s way of giving the client a hint about how the request was handled.

It is important to note that curl does not consider it an error even if the response code
would indicate that the requested document could not be delivered (or similar). curl
considers a successful sending and receiving of HTTP to be good.

The first digit of the HTTP response code is a kind of error class:

• 1xx: transient response, more is coming
• 2xx: success
• 3xx: a redirect
• 4xx: the client asked for something the server could not or would not deliver
• 5xx: there is a problem in the server

Remember that you can use curl’s --write-out option to extract the response code. See
the –write-out section.

To make curl return an error for response codes >= 400, you need to use --fail or
--fail-with-body. Then curl exits with error code 22 for such occurrences.

241



242 RESPONSES

CONNECT response codes
Since there can be an HTTP request and a separate CONNECT request in the same curl
transfer, we often separate the CONNECT response (from the proxy) from the remote
server’s HTTP response.

The CONNECT is also an HTTP request so it gets response codes in the same numeric
range and you can use --write-out to extract that code as well.

Chunked transfer encoding
An HTTP 1.1 server can decide to respond with a chunked encoded response, a feature
that was not present in HTTP 1.0.

When receiving a chunked response, there is no Content-Length: for the response to
indicate its size. Instead, there is a Transfer-Encoding: chunked header that tells
curl there is chunked data coming and then in the response body, the data comes in a
series of chunks. Every individual chunk starts with the size of that particular chunk (in
hexadecimal), then a newline and then the contents of the chunk. This is repeated over
and over until the end of the response, which is signaled with a zero sized chunk. The
point of this response encoding is for the client to be able to figure out when the response
has ended even though the server did not know the full size before it started to send it.
This is usually the case when the response is dynamic and generated at the point when
the request comes.

Clients like curl decode the chunks and do not show the chunk sizes to users.

Gzipped transfers
Responses over HTTP can be sent in compressed format. This is most commonly done
by the server when it includes a Content-Encoding: gzip in the response as a hint to
the client. Compressed responses make a lot of sense when either static resources are sent
(that were compressed previously) or even in runtime when there is more CPU power
available than bandwidth. Sending a much smaller amount of data is often preferred.

You can ask curl to both ask for compressed content and automatically and transparently
uncompress gzipped data when receiving content encoded gzip (or in fact any other
compression algorithm that curl understands) by using --compressed:

curl --compressed http://example.com/

Transfer encoding
A less common feature used with transfer encoding is compression.

Compression in itself is common. Over time the dominant and web compatible way to do
compression for HTTP has become to use Content-Encoding as described in the section
above. But HTTP was originally intended and specified to allow transparent compression
as a transfer encoding, and curl supports this feature.



PASS ON TRANSFER ENCODING 243

The client then simply asks the server to do compression transfer encoding and if ac-
ceptable, it responds with a header indicating that it does and curl then transparently
decompresses that data on arrival. A curl user asks for a compressed transfer encoding
with --tr-encoding:

curl --tr-encoding http://example.com/

It should be noted that not many HTTP servers in the wild support this.

Pass on transfer encoding
In some situations you may want to use curl as a proxy or other in-between software. In
those cases, curl’s way to deal with transfer-encoding headers and then decoding the actual
data transparently may not be desired, if the end receiver also expects to do the same.

You can then ask curl to pass on the received data, without decoding it. That means
passing on the sizes in the chunked encoding format or the compressed format when
compressed transfer encoding is used etc.

curl --raw http://example.com/



Authentication

Each HTTP request can be made authenticated. If a server or a proxy want the user to
provide proof that they have the correct credentials to access a URL or perform an action,
it can send an HTTP response code that informs the client that it needs to provide a
correct HTTP authentication header in the request to be allowed.

A server that requires authentication sends back a 401 response code and an associated
WWW-Authenticate: header that lists all the authentication methods that the server
supports.

An HTTP proxy that requires authentication sends back a 407 response code and an
associated Proxy-Authenticate: header that lists all the authentication methods that
the proxy supports.

It might be worth to note that most websites of today do not require HTTP authentication
for login etc, but they instead ask users to login on webpages and then the browser issues
a POST with the user and password etc, and then subsequently maintain cookies for the
session.

To tell curl to do an authenticated HTTP request, you use the -u, --user option to
provide user name and password (separated with a colon). Like this:

curl --user daniel:secret http://example.com/

This makes curl use the default Basic HTTP authentication method. Yes, it is actually
called Basic and it is truly basic. To explicitly ask for the basic method, use --basic.

The Basic authentication method sends the user name and password in clear text over the
network (base64 encoded) and should be avoided for HTTP transport.

When asking to do an HTTP transfer using a single (specified or implied), authentication
method, curl inserts the authentication header already in the first request on the wire.

If you would rather have curl first test if the authentication is really required, you can ask
curl to figure that out and then automatically use the most safe method it knows about
with --anyauth. This makes curl try the request unauthenticated, and then switch over
to authentication if necessary:

curl --anyauth --user daniel:secret http://example.com/

and the same concept works for HTTP operations that may require authentication:

curl --proxy-anyauth --proxy-user daniel:secret http://example.com/ \
--proxy http://proxy.example.com:80/

244



245

curl typically (a little depending on how it was built) speaks several other authentication
methods as well, including Digest, Negotiate and NTLM. You can ask for those methods
too specifically:

curl --digest --user daniel:secret http://example.com/
curl --negotiate --user daniel:secret http://example.com/
curl --ntlm --user daniel:secret http://example.com/



Ranges

What if the client only wants the first 200 bytes out of a remote resource or perhaps 300
bytes somewhere in the middle? The HTTP protocol allows a client to ask for only a
specific data range. The client asks the server for the specific range with a start offset
and an end offset. It can even combine things and ask for several ranges in the same
request by just listing a bunch of pieces next to each other. When a server sends back
multiple independent pieces to answer such a request, you get them separated with mime
boundary strings and it is up to the user application to handle that accordingly. curl does
not further separate such a response.

However, a byte range is only a request to the server. It does not have to respect the
request and in many cases, like when the server automatically generates the contents on
the fly when it is being asked, it simply refuses to do it and it then instead responds with
the full contents anyway.

You can make curl ask for a range with -r or --range. If you want the first 200 bytes out
of something:

curl -r 0-199 http://example.com

Or everything in the file starting from index 200:

curl -r 200- http://example.com

Get 200 bytes from index 0 and 200 bytes from index 1000:

curl -r 0-199,1000-1199 http://example.com/

246



HTTP versions

As any other Internet protocol, the HTTP protocol has kept evolving over the years and
now there are clients and servers distributed over the world and over time that speak
different versions with varying levels of success. In order to get curl to work with your
URLs, curl offers ways for you to specify which HTTP version a request and transfer
should use. curl is designed in a way so that it tries to use the most common, the most
sensible if you want, default values first but sometimes that is not enough and then you
may need to instruct curl on what to do.

curl defaults to HTTP/1.1 for HTTP servers but if you connect to HTTPS and you have
a curl that has HTTP/2 abilities built-in, it attempts to negotiate HTTP/2 automatically
or falls back to 1.1 in case the negotiation failed. Non-HTTP/2 capable curls get 1.1 over
HTTPS by default.

Option Description
–http1.0 HTTP/1.0
–http1.1 HTTP/1.1
–http2 HTTP/2
–http2-prior-knowledge HTTP/2
–http3 HTTP/3

• HTTP/0.9
• HTTP/2
• HTTP/3

247



HTTP/0.9

The HTTP version used before HTTP/1.0 was made available is often referred to as
HTTP/0.9. Back in those days, HTTP responses had no headers as they would only
return a response body and then immediately close the connection.

curl can be told to support such responses but by default it does not recognize them, for
security reasons. Almost anything bad looks like an HTTP/0.9 response to curl so the
option needs to be used with caution.

The HTTP/0.9 option to curl is different than the other HTTP command line options
for HTTP versions mentioned above as this controls what response to accept, while the
others are about what HTTP protocol version to try to use.

Tell curl to accept an HTTP/0.9 response like this:

curl --http0.9 https://example.com/

248



HTTP/2

curl supports HTTP/2 for both HTTP:// and HTTPS:// URLs assuming that curl was
built with the proper prerequisites. It even defaults to using HTTP/2 when given an
HTTPS URL since doing so implies no penalty and when curl is used with sites that do
not support HTTP/2 the request instead negotiates HTTP/1.1.

With HTTP:// URLs however, the upgrade to HTTP/2 is done with an Upgrade: header
that may cause an extra round-trip and perhaps even more troublesome, a sizable share of
old servers returns a 400 response when seeing such a header.

It should also be noted that some (most?) servers that support HTTP/2 for HTTP://
(which in itself is not all servers) do not acknowledge the Upgrade: header on POST, for
example.

To ask a server to use HTTP/2, just:

curl --http2 http://example.com/

If your curl does not support HTTP/2, that command line tool returns an error saying so.
Running curl -V shows if your version of curl supports it.

If you by some chance already know that your server speaks HTTP/2 (for example, within
your own controlled environment where you know exactly what runs in your machines)
you can shortcut the HTTP/2 negotiation with --http2-prior-knowledge.

Multiplexing
A primary feature in the HTTP/2 protocol, is the ability to multiplex several logical
streams over the same physical connection. The curl command-line tool can take advantage
of this feature when doing parallel transfers.

249



HTTP/3

HTTP/3 is different than its predecessors in several ways. Maybe most noticeably, HTTP/3
cannot be negotiated on the same connection like HTTP/2 can. Due to HTTP/3 using a
different transport protocol, it has to set up and negotiate a dedicated connection for it.

QUIC
HTTP/3 is the HTTP version that is designed to communicate over QUIC. QUIC can for
most particular purposes be considered a TCP+TLS replacement.

All transfers that use HTTP/3 therefore do not use TCP. They use QUIC. QUIC is a
reliable transport protocol built over UDP. HTTP/3 implies use of QUIC.

HTTPS only
HTTP/3 is performed over QUIC which is always using TLS, so HTTP/3 is by definition
always encrypted and secure. Therefore, curl only uses HTTP/3 for HTTPS:// URLs.

Enable
As a shortcut straight to HTTP/3, to make curl attempt a QUIC connect directly to the
given hostname and port number, use --http3. Like this:

curl --http3 https://example.com/

Normally, without the --http3 option, an HTTPS:// URL implies that a client needs to
connect to it using TCP (and TLS).

Multiplexing
A primary feature in the HTTP/3 protocol, is the ability to multiplex several logical
streams over the same physical connection. The curl command-line tool can take advantage
of this feature when doing parallel transfers.

Alt-svc:
The alt-svc method of changing to HTTP/3 is the official way to bootstrap into HTTP/3
for a server.

250



WHEN QUIC IS DENIED 251

Note that you need that feature built-in and that it does not switch to HTTP/3 for the
current request unless the alt-svc cache is already populated, but it rather stores the info
for use in the next request to the host.

When QUIC is denied
A certain amount of QUIC connection attempts fail, partly because many networks and
hosts block or throttle the traffic.

When --http3 is used, curl starts a second transfer attempt a few hundred milliseconds
after the QUIC connection is initiated which is using HTTP/2 or HTTP/1, so that if the
connection attempt over QUIC fails or turns out to be unbearably slow, the connection
using an older HTTP version can still succeed and perform the transfer. This allows users
to use --http3 with some amount of confidence that the operation works.

--http3-only is provided to explicitly not try any older version in parallel, but thus
makes the transfer fail immediately if no QUIC connection can be established.



Conditionals

Sometimes users want to avoid downloading a file again if the same file maybe already
has been downloaded the day before. This can be done by making the HTTP transfer
conditioned on something. curl supports two different conditions: the file timestamp and
etag.

Check by modification date
Download the file only if it is newer than a specific date with the use of the -z or
--time-cond option:

curl -z "Jan 10, 2017" https://example.com/file -O

Or the reverse, get the file only if it is older than the specific time by prefixing the date
with a dash:

curl --time-cond "-Jan 10, 2017" https://example.com/file -O

The date parser is liberal and accepts most formats you can write the date with, and you
can also specify it complete with a time:

curl --time-cond "Sun, 12 Sep 2004 15:05:58 -0700" \
https://www.example.org/file.html

The -z option can also extract and use the timestamp from a local file, which is handy to
only download a file if it has been updated remotely:

curl -z file.html https://example.com/file.html -O

It is often useful to combine the use of -z with the --remote-time flag, which sets the
time of the locally created file to the same timestamp as the remote file had:

curl -z file.html -o file.html --remote-time https://example.com/file.html

Check by modification of content
HTTP servers can return a specific ETag for a given resource version. If the resource at a
given URL changes, a new Etag value must be generated, so a client knows that as long
as the ETag remains the same, the content has not changed.

Using ETags, curl can check for remote updates without having to rely on times or file
dates. It also then makes the check able to detect sub-second changes, which the timestamp
based checks cannot.

252



CHECK BY MODIFICATION OF CONTENT 253

Using curl you can download a remote file and save its ETag (if it provides any) in a
separate cache by using the --etag-save command line option. Like this:

curl --etag-save etags.txt https://example.com/file -o output

A subsequent command line can then use that previously saved etag and make sure to
only download the file again if it has changed, like this:

curl --etag-compare etag.txt https://example.com/file -o output

The two etag options can also be combined in the same command line, so that if the file
actually was updated, curl would save the update ETag again in the file:

curl --etag-compare etag.txt --etag-save etag.txt \
https://example.com/file -o output



HTTPS

HTTPS is in effect Secure HTTP. The secure part means that the TCP transport layer is
enhanced to provide authentication, privacy (encryption) and data integrity by the use of
TLS.

See the Using TLS section for in-depth details on how to modify and tweak the TLS
details in an HTTPS transfer.

254



HTTP POST

POST is the HTTP method that was invented to send data to a receiving web application,
and it is how most common HTML forms on the web work. It usually sends a chunk of
relatively small amounts of data to the receiver.

• Simple POST
• Content-Type
• Posting binary
• JSON
• URL encoding
• Convert to GET
• Expect 100-continue
• Chunked encoded POSTs
• Hidden form fields
• Figure out what a browser sends
• JavaScript and forms
• Multipart formposts
• -d vs -F

255



Simple POST

To send form data, a browser URL encodes it as a series of name=value pairs separated
by ampersand (&) symbols. The resulting string is sent as the body of a POST request.
To do the same with curl, use the -d (or --data) argument, like this:

curl -d ’name=admin&shoesize=12’ http://example.com/

When specifying multiple -d options on the command line, curl concatenates them and
insert ampersands in between, so the above example could also be written like this:

curl -d name=admin -d shoesize=12 http://example.com/

If the amount of data to send is too large for a mere string on the command line, you can
also read it from a filename in standard curl style:

curl -d @filename http://example.com

While the server might assume that the data is encoded in some special way, curl does not
encode or change the data you tell it to send. curl sends exactly the bytes you give
it (except that when reading from a file. -d skips over the carriage returns and newlines
so you need to use --data-binary if you rather intend them to be included in the data.).

To send a POST body that starts with a @ symbol, to avoid that curl tries to load that as
a filename, use --data-raw instead. This option has no file loading capability:

curl --data-raw ’@string’ https://example.com

256



Content-Type

POSTing with curl’s -d option makes it include a default header that looks like
Content-Type: application/x-www-form-urlencoded. That is what your typical
browser uses for a plain POST.

Many receivers of POST data do not care about or check the Content-Type header.

If that header is not good enough for you, you should, of course, replace that and instead
provide the correct one. Such as if you POST JSON to a server and want to more
accurately tell the server about what the content is:

curl -d ’{json}’ -H ’Content-Type: application/json’ https://example.com

257



Posting binary

When reading data to post from a file, -d strips out carriage returns and newlines. Use
--data-binary if you want curl to read and use the given file in binary exactly as given:

curl --data-binary @filename http://example.com/

258



JSON

curl 7.82.0 introduced the --json option as a new way to send JSON formatted data to
HTTP servers using POST. This option works as a shortcut and provides a single option
that replaces these three:

--data [arg]
--header "Content-Type: application/json"
--header "Accept: application/json"

This option does not make curl actually understand or know about the JSON data it
sends, but it makes it easier to send it. curl does not touch or parse the data that it sends,
so you need to make sure it is valid JSON yourself.

Send a basic JSON object to a server:

curl --json ’{"tool": "curl"}’ https://example.com/

Send JSON from a local file:

curl --json @json.txt https://example.com/

Send JSON passed to curl on stdin:

echo ’{"a":"b"}’ | curl --json @- https://example.com/

You can use multiple --json options on the same command line. This makes curl
concatenate the contents from the options and send all data in one go to the server. Note
that the concatenation is plain text based and it does not merge the JSON objects as per
JSON.

Send JSON from a file and concatenate a string to the end:

curl --json @json.txt --json ’, "end": "true"}’ https://example.com/

Crafting JSON to send
The quotes used in JSON data sometimes makes it a bit difficult and cumbersome to write
and use in shells and scripts.

Using a separate tool for this purpose might make things easier for you, and one tool in
particular that might help you accomplish this is jo.

Send a basic JSON object to a server with jo and --json

jo -p name=jo n=17 parser=false | curl --json @- https://example.com/

259

https://github.com/jpmens/jo


260 JSON

Receiving JSON
curl itself does not know or understand the contents it sends or receives, including when
the server returns JSON in its response.

Using a separate tool for the purpose of parsing or pretty-printing JSON responses might
make things easier for you, and one tool in particular that might help you accomplish this
is jq.

Send a basic JSON object to a server, and pretty-print the JSON response:

curl --json ’{"tool": "curl"}’ https://example.com/ | jq

Send the JSON with jo, print the response with jq:

jo -p name=jo n=17 | curl --json @- https://example.com/ | jq

jq is a powerful and capable tool for extracting, filtering and managing JSON content that
goes way beyond just pretty-printing.

https://stedolan.github.io/jq/


URL encode data

Percent-encoding, also known as URL encoding, is technically a mechanism for encoding
data so that it can appear in URLs. This encoding is typically used when sending POSTs
with the application/x-www-form-urlencoded content type, such as the ones curl sends
with --data and --data-binary etc.

The command-line options mentioned above all require that you provide properly encoded
data, data you need to make sure already exists in the right format. While that gives you
a lot of freedom, it is also a bit inconvenient at times.

To help you send data you have not already encoded, curl offers the --data-urlencode
option. This option offers several different ways to URL encode the data you give it.

You use it like --data-urlencode data in the same style as the other –data options. To
be CGI-compliant, the data part should begin with a name followed by a separator and
a content specification. The data part can be passed to curl using one of the following
syntaxes:

• content: URL encode the content and pass that on. Just be careful so that the
content does not contain any = or @ symbols, as that then makes the syntax match
one of the other cases below.

• =content: URL encode the content and pass that on. The initial = symbol is not
included in the data.

• name=content: URL encode the content part and pass that on. Note that the name
part is expected to be URL encoded already.

• @filename: load data from the given file (including any newlines), URL encode that
data and pass it on in the POST.

• name@filename: load data from the given file (including any newlines), URL encode
that data and pass it on in the POST. The name part gets an equal sign appended,
resulting in name=urlencoded-file-content. Note that the name is expected to
be URL encoded already.

As an example, you could POST a name to have it encoded by curl:

curl --data-urlencode "name=John Doe (Junior)" http://example.com

. . . which would send the following data in the actual request body:

name=John%20Doe%20%28Junior%29

If you store the string John Doe (Junior) in a file named contents.txt, you can tell
curl to send that contents URL encoded using the field name ‘user’ like this:

261



262 URL ENCODE DATA

curl --data-urlencode user@contents.txt http://example.com

In both these examples above, the field name is not URL encoded but is passed on as-is.
If you want to URL encode the field name as well, like if you want to pass on a field name
called user name, you can ask curl to encode the entire string by prefixing it with an
equals sign (that does not get sent):

curl --data-urlencode "=user name=John Doe (Junior)" http://example.com



Convert to GET

A little convenience feature that could be suitable to mention in this context is the -G or
--get option, which takes all data you have specified with the different -d variants and
appends that data to the inputted URL e.g. http://example.com separated with a ‘?’
and then makes curl send a GET instead.

This option makes it easy to switch between POSTing and GETing a form, for example.

An example that adds an encoded piece of data as a query in the URL:

curl -G --data-urlencode "name=daniel stenberg" https://example.com/

263



Expect 100-continue

HTTP/1 has no proper way to stop an ongoing transfer (in any direction) and still maintain
the connection. So, if we figure out that the transfer had better stop after the transfer
has started, there are only two ways to proceed: cut the connection and pay the price of
reestablishing the connection again for the next request, or keep the transfer going and
waste bandwidth but be able to reuse the connection next time.

One example of when this can happen is when you send a large file over HTTP, only to
discover that the server requires authentication and immediately sends back a 401 response
code.

The mitigation that exists to make this scenario less frequent is to have curl pass on an
extra header, Expect: 100-continue, which gives the server a chance to deny the request
before a lot of data is sent off. curl sends this Expect: header by default if the POST it
does is known or suspected to be larger than one megabyte. curl also does this for PUT
requests.

When a server gets a request with an 100-continue and deems the request fine, it responds
with a 100 response that makes the client continue. If the server does not like the request,
it sends back response code for the error it thinks it is.

Unfortunately, lots of servers in the world do not properly support the Expect: header
or do not handle it correctly, so curl only waits 1000 milliseconds for that first response
before it continues anyway.

You can change the amount of time curl waits for a response to Expect by using
--expect100-timeout <seconds>. You can avoid the wait entirely by using -H Expect:
to remove the header:

curl -H Expect: -d "payload to send" http://example.com

In some situations, curl inhibits the use of the Expect header if the content it is about to
send is small (below one megabyte), as having to waste such a small chunk of data is not
considered much of a problem.

HTTP/2 and later
HTTP/2 and later versions of HTTP can stop an ongoing transfer without shutting down
the connection, which makes Expect: pointless.

264



Chunked encoded POSTs

When talking to an HTTP 1.1 server, you can tell curl to send the request body without a
Content-Length: header upfront that specifies exactly how big the POST is. By insisting
on curl using chunked Transfer-Encoding, curl sends the POST chunked piece by piece in
a special style that also sends the size for each such chunk as it goes along.

You send a chunked POST with curl like this:

curl -H "Transfer-Encoding: chunked" -d @file http://example.com

Caveats
This assumes that you know you do this against an HTTP/1.1 server. Before 1.1, there
was no chunked encoding, and after version 1.1 chunked encoding has been deprecated.

265



Hidden form fields

Sending a post with -d is the equivalent of what a browser does when an HTML form is
filled in and submitted.

Submitting such forms is a common operation with curl; effectively, to have curl fill in a
web form in an automated fashion.

If you want to submit a form with curl and make it look as if it has been done with a
browser, it is important to provide all the input fields from the form. A common method
for webpages is to set a few hidden input fields to the form and have them assigned values
directly in the HTML. A successful form submission, of course, also includes those fields
and in order to do that automatically you may be forced to first download the HTML
page that holds the form, parse it, and extract the hidden field values so that you can
send them off with curl.

266



Figure out what a browser sends

A common shortcut is to simply fill in the form with your browser and submit it and check
in the browser’s network development tools exactly what it sent.

A slightly different way is to save the HTML page containing the form, and then edit
that HTML page to redirect the ‘action=’ part of the form to your own server or a test
server that just outputs exactly what it gets. Completing that form submission shows you
exactly how a browser sends it.

A third option is, of course, to use a network capture tool such as Wireshark to check
exactly what is sent over the wire. If you are working with HTTPS, you cannot see form
submissions in clear text on the wire but instead you need to make sure you can have
Wireshark extract your TLS private key from your browser. See the SSLKEYLOGFILE
section for details on doing that.

267



JavaScript and forms

A common mitigation against automated agents or scripts using curl is to have the page
with the HTML form use JavaScript to set values of some input fields, usually one of the
hidden ones. Often, there is some JavaScript code that executes on page load or when the
submit button is pressed which sets a magic value that the server then can verify before it
considers the submission to be valid.

You can usually work around that by just reading the JavaScript code and redoing that
logic in your script. Using the tricks in Figure out what a browser sends to check exactly
what a browser sends is then also a good help.

268



Multipart formposts

A multipart formpost is what an HTTP client sends when an HTML form is submitted
with enctype set to multipart/form-data. It is an HTTP POST request sent with the
request body specially formatted as a series of parts, separated with MIME boundaries.

An example piece of HTML would look like this:

<form action="submit.cgi" method="post" enctype="multipart/form-data">
Name: <input type="text" name="person"><br>
File: <input type="file" name="secret"><br>
<input type="submit" value="Submit">

</form>

Which could look something like this in a web browser:

Figure 13: a multipart form

A user can fill in text in the ‘Name’ field and by pressing the Browse button a local file
can be selected that is uploaded when Submit is pressed.

Sending such a form with curl
With curl, you add each separate multipart with one -F (or --form) flag and you then
continue and add one -F for every input field in the form that you want to send.

The above small example form has two parts, one named ‘person’ that is a plain text field
and one named ‘secret’ that is a file.

Send your data to that form like this:

curl -F person=anonymous -F secret=@file.txt http://example.com/submit.cgi

269



270 MULTIPART FORMPOSTS

The HTTP this generates
The action specifies where the POST is sent. method says it is a POST and enctype
tells us it is a multipart formpost.

With the fields filled in as shown above, curl generates and sends these HTTP request
headers to the host example.com:

POST /submit.cgi HTTP/1.1
Host: example.com
User-Agent: curl/7.46.0
Accept: */*
Content-Length: 313
Expect: 100-continue
Content-Type: multipart/form-data; boundary=------------d74496d66958873e

Content-Length, of course, tells the server how much data to expect. This example’s
313 bytes is really small.

The Expect header is explained in the Expect 100 continue chapter.

The Content-Type header is a bit special. It tells that this is a multipart formpost and
then it sets the boundary string. The boundary string is a line of characters with a bunch
of random digits somewhere in it, that serves as a separator between the different parts
of the form that is submitted. The particular boundary you see in this example has the
random part d74496d66958873e but you, of course, get something different when you run
curl (or when you submit such a form with a browser).

So after that initial set of headers follows the request body

--------------------------d74496d66958873e
Content-Disposition: form-data; name="person"

anonymous
--------------------------d74496d66958873e
Content-Disposition: form-data; name="secret"; filename="file.txt"
Content-Type: text/plain

contents of the file
--------------------------d74496d66958873e--

Here you clearly see the two parts sent, separated with the boundary strings. Each part
starts with one or more headers describing the individual part with its name and possibly
some more details. Then after the part’s headers come the actual data of the part, without
any sort of encoding.

The last boundary string has two extra dashes -- appended to signal the end.

Content-Type
POSTing with curl’s -F option makes it include a default Content-Type header in its
request, as shown in the above example. This says multipart/form-data and then
specifies the MIME boundary string. That Content-Type is the default for multipart



CONVERTING A WEB FORM 271

formposts but you can, of course, still modify that for your own commands and if you
do, curl is clever enough to still append the boundary magic to the replaced header. You
cannot really alter the boundary string, since curl needs that for producing the POST
stream.

To replace the header, use -H like this:

curl -F ’name=Dan’ -H ’Content-Type: multipart/magic’ https://example.com

Converting a web form
There are a few different ways to figure out how to write a curl command line to submit a
multipart form as seen in HTML.

1. Save the HTML locally, run nc locally to listen on a chosen port number, change
the action URL to submit the POST to your local nc instance. Submit the form
and watch how nc shows it. Then translate into a curl command line.

2. Use the development tools in your favorite browser and inspect the POST request in
the network tab after you have submitted it. Then convert that HTTP data to a
curl command line. Unfortunately, the copy as curl feature in the browsers usually
do not actually do multipart formposts particularly well.

3. Inspect the source HTML and convert into a curl command line directly from that.

From <form> to -F
In a <form> that uses enctype="multipart/form-data", the first step is to find the
action= property as that tells the target for the POST. You need to convert that into a
full URL for your curl command line.

An example action looks like this:

<form action="submit.cgi" method="post" enctype="multipart/form-data">

If the form is found in a webpage hosted on a URL like for example https://example.com/user/login
the action=submit.cgi is a relative path within the same directory as the form itself. The
full URL to submit this form thus becomes https://example.com/user/submit.cgi.
That is the URL to use in the curl command line.

Next, you must identify every <input> tag used within the form, including the ones that
are marked as hidden. Hidden just means that they are not shown in the webpage, but
they should still be sent in the POST.

For every <input> in the form there should be a corresponding -F in the command line.

text input
A regular tag using type text in the style like

<input type="text" name="person">

should then set the field name with content like this:

curl -F "person=Mr Smith" https://example.com/



272 MULTIPART FORMPOSTS

file input
When the input type is set to a file, like in:

<input type="file" name="image">

You provide a file for this part by specifying the filename and use @ and the path to the
file to include:

curl -F image=@funnycat.gif https://example.com/

hidden input
A common technique to pass on state from a form is to set a number of <input> tags as
type="hidden". This is basically the same thing as an already filled in form field, so you
convert this to a command line by using the name and value. For example:

<input type="hidden" name="username" value="bob123">

This is converted like for the normal text field, and here you know what the content should
be:

curl -F "username=bob123" https://example.com/

All fields at once
If we toy with the idea that all the three different <input> tags showed in the examples
above were used in the same <form>, then a complete curl command line to send, including
the correct URL as extracted above, would look like:

curl -F "person=Mr Smith" -F image=@funnycat.gif -F "username=bob123" \
https://example.com/user/submit.cgi



-d vs -F

Previous chapters talked about regular POST and multipart formpost, and in your typical
command lines you do them with -d or -F.

When do you use which of them?

As described in the chapters mentioned above, both these options send the specified data
to the server. The difference is in how the data is formatted over the wire. Most of the
time, the receiving end is written to expect a specific format and it expects that the sender
formats and sends the data correctly. A client cannot just pick a format of its own choice.

HTML web forms
When we are talking browsers and HTML, the standard way is to offer a form to the
user that sends off data when the form has been filled in. The <form> tag is what makes
one of those appear on the webpage. The tag instructs the browser how to format its
POST. If the form tag includes enctype=multipart/form-data, it tells the browser to
send the data as a multipart formpost which you make with curl’s -F option. This method
is typically used when the form includes a <input type=file> tag, for file uploads.

The default enctype used by forms, which is rarely spelled out in HTML since it is default,
is application/x-www-form-urlencoded. It makes the browser URL encode the input
as name=value pairs with the data encoded to avoid unsafe characters. We often refer to
that as a regular POST, and you perform one with curl’s -d and friends.

POST outside of HTML
POST is a regular HTTP method and there is no requirement that it be triggered by
HTML or involve a browser. Lots of services, APIs and other systems allow you to pass in
data these days in order to get things done.

If these services expect plain raw data or perhaps data formatted as JSON or similar, you
want the regular POST approach. curl’s -d option does not alter or encode the data at
all but just sends exactly what you tell it to. Just pay attention that -d sets a default
Content-Type: that might not be what you want.

273



Redirects

The “redirect” is a fundamental part of the HTTP protocol. The concept was present
and is documented already in the first spec (RFC 1945), published in 1996, and it has
remained well-used ever since.

A redirect is exactly what it sounds like. It is the server sending back an instruction to
the client instead of giving back the contents the client wanted. The server says “go look
over here instead for that thing you asked for“.

Redirects are not all alike. How permanent is the redirect? What request method should
the client use in the next request?

All redirects also need to send back a Location: header with the new URI to ask for,
which can be absolute or relative.

Permanent and temporary
Is the redirect meant to last or just remain valid for now? If you want a GET to permanently
redirect users to resource B with another GET, send back a 301. It also means that the
user-agent (browser) is meant to cache this and keep going to the new URI from now on
when the original URI is requested.

The temporary alternative is 302. Right now the server wants the client to send a GET
request to B, but it should not cache this but keep trying the original URI when directed
to it next time.

Note that both 301 and 302 make browsers do a GET in the next request, which possibly
means changing the method if it started with a POST (and only if POST). This changing
of the HTTP method to GET for 301 and 302 responses is said to be “for historical
reasons”, but that’s still what browsers do so most of the public web behaves this way.

In practice, the 303 code is similar to 302. It is not be cached and it makes the client issue
a GET in the next request. The differences between a 302 and 303 are subtle, but 303
seems to be more designed for an “indirect response” to the original request rather than
just a redirect.

These three codes were the only redirect codes in the HTTP/1.0 spec.

curl however, does not remember or cache any redirects at all so to it, there is really no
difference between permanent and temporary redirects.

274



GET OR POST? 275

Tell curl to follow redirects
In curl’s tradition of only doing the basics unless you tell it differently, it does not follow
HTTP redirects by default. Use the -L, --location option to tell it to do that.

When following redirects is enabled, curl follows up to 30 redirects by default. There is a
maximum limit mostly to avoid the risk of getting caught in endless loops. If 30 is not
sufficient for you, you can change the maximum number of redirects to follow with the
--max-redirs option.

GET or POST?
All three of these response codes, 301 and 302/303, assume that the client sends a GET to
get the new URI, even if the client might have sent a POST in the first request. This is
important, at least if you do something that does not use GET.

If the server instead wants to redirect the client to a new URI and wants it to send the
same method in the second request as it did in the first, like if it first sent POST it’d like
it to send POST again in the next request, the server would use different response codes.

To tell the client “the URI you sent a POST to, is permanently redirected to B where you
should instead send your POST now and in the future”, the server responds with a 308.
To complicate matters, the 308 code is only recently defined (the spec was published in
June 2014) so older clients may not treat it correctly. If so, then the only response code
left for you is. . .

The (older) response code to tell a client to send a POST also in the next request but
temporarily is 307. This redirect is not be cached by the client though, so it’ll again post
to A if requested to again. The 307 code was introduced in HTTP/1.1.

Oh, and redirects work the same way in HTTP/2 as they do in HTTP/1.1.

Permanent Temporary
Switch to GET 301 302 and 303
Keep original method 308 307

Decide what method to use in redirects
It turns out that there are web services out there in the world that want a POST sent
to the original URL, but are responding with HTTP redirects that use a 301, 302 or 303
response codes and still want the HTTP client to send the next request as a POST. As
explained above, browsers won’t do that and neither does curl by default.

Since these setups exist, and they’re actually not terribly rare, curl offers options to alter
its behavior.

You can tell curl to not change the non-GET request method to GET after a 30x response
by using the dedicated options for that: --post301, --post302 and --post303. If
you are instead writing a libcurl based application, you control that behavior with the
CURLOPT_POSTREDIR option.

https://tools.ietf.org/html/rfc7238#section-3


276 REDIRECTS

Redirecting to other host names
When you use curl you may provide credentials like user name and password for a particular
site, but since an HTTP redirect might move away to a different host curl limits what it
sends away to other hosts than the original within the same transfer.

So if you want the credentials to also get sent to the following host names even though
they are not the same as the original—presumably because you trust them and know that
there is no harm in doing that—you can tell curl that it is fine to do so by using the
--location-trusted option.



Non-HTTP redirects

Browsers support more ways to do redirects that sometimes make life complicated to a
curl user as these methods are not supported or recognized by curl.

HTML redirects
If the above was not enough, the web world also provides a method to redirect browsers
by plain HTML. See the example <meta> tag below. This is somewhat complicated with
curl since curl never parses HTML and thus has no knowledge of these kinds of redirects.

<meta http-equiv="refresh" content="0; url=http://example.com/">

JavaScript redirects
The modern web is full of JavaScript and as you know, JavaScript is a language and a full
runtime that allows code to execute in the browser when visiting websites.

JavaScript also provides means for it to instruct the browser to move on to another site -
a redirect, if you will.

277



Modify the HTTP request

As described earlier, each HTTP transfer starts with curl sending an HTTP request. That
request consists of a request line and a number of request headers, and this chapter details
how you can modify all of those.

• Request method
• Request target
• Fragment
• Customize headers
• Referer
• User-agent

Of course, changing the HTTP version is another way to alter the request.

278



Request method

The first line of an HTTP request includes the method - sometimes also referred to as the
verb. When doing a simple GET request as this command line would do:

curl http://example.com/file

. . . the initial request line looks like this:

GET /file HTTP/1.1

You can tell curl to change the method into something else by using the -X or --request
command-line options followed by the actual method name. You can, for example, send a
DELETE instead of GET like this:

curl http://example.com/file -X DELETE

This command-line option only changes the text in the outgoing request, it does not
change any behavior. This is particularly important if you, for example, ask curl to send
a HEAD with -X, as HEAD is specified to send all the headers a GET response would
get but never send a response body, even if the headers otherwise imply that one would
come. So, adding -X HEAD to a command line that would otherwise do a GET causes curl
to hang, waiting for a response body that does not come.

When asking curl to perform HTTP transfers, it picks the correct method based on the
option so you should only rarely have to explicitly ask for it with -X. It should also be
noted that when curl follows redirects like asked to with -L, the request method set with
-X is sent even on the subsequent redirects.

279



Request target

When given an input URL such as http://example.com/file, the path section of the
URL gets extracted and is turned into /file in the HTTP request line. That item in the
protocol is called the request target in HTTP. That is the resource this request interacts
with. Normally this request target is extracted from the URL and then used in the request
and as a user you do not need to think about it.

In some rare circumstances, user may want to go creative and change this request target
in ways that the URL does not really allow. For example, the HTTP OPTIONS method
has a specially define request target for magic that concerns the server and not a specific
path, and it uses * for that. Yes, a single asterisk. There is no way to specify a URL
for this, so if you want to pass a single asterisk in the request target to a server, like for
OPTIONS, you have to do it like this:

curl -X OPTIONS --request-target "*" http://example.com/

That example command line makes the first line of the outgoing HTTP request to look
like this:

OPTIONS * HTTP/1.1

–path-as-is
The path part of the URL is the part that starts with the first slash after the hostname
and ends either at the end of the URL or at a ‘?’ or ‘#’ (roughly speaking).

If you include substrings including /../ or /./ in the path, curl automatically squashes
them before the path is sent to the server, as is dictated by standards and how such strings
tend to work in local file systems. The /../ sequence removes the previous section so that
/hello/sir/../ ends up just /hello/ and /./ is simply removed so that /hello/./sir/
becomes /hello/sir/.

To prevent curl from squashing those magic sequences before they are sent to the server
and thus allow them through, the --path-as-is option exists.

Lame attempt to trick the server to deliver its /etc/passwd file:

curl --path-as-is https://example.com/../../etc/passwd

280



Fragment

A URL may contain an anchor, also known as a fragment, which is writ-
ten with a pound sign and string at the end of the URL. Like for example
http://example.com/foo.html#here-it-is. That fragment part, everything from the
pound/hash sign to the end of the URL, is only intended for local use and is not sent over
the network. curl simply strips that data off and discards it.

281



Customize headers

In an HTTP request, after the initial request-line, there typically follows a number of
request headers. That is a set of name: value pairs that ends with a blank line that
separates the headers from the following request body (that sometimes is empty).

curl passes on a few default headers by default on its own account in requests, like for
example Host:, Accept:, User-Agent: and a few others that may depend on what the
user asks curl to do.

All headers set by curl itself can be replaced, by the user. You just then tell curl’s -H or
--header the new header to use and it then replaces the internal one if the header field
matches one of those headers, or it adds the specified header to the list of headers to send
in the request.

To change the Host: header, do this:

curl -H "Host: test.example" http://example.com/

To add a Elevator: floor-9 header, do this:

curl -H "Elevator: floor-9" http://example.com/

If you just want to delete an internally generated header, just give it to curl without a
value, just nothing on the right side of the colon.

To switch off the User-Agent: header, do this:

curl -H "User-Agent:" http://example.com/

Finally, if you then truly want to add a header with no contents on the right side of the
colon (which is a rare thing), the magic marker for that is to instead end the header field
name with a semicolon. Like this:

curl -H "Empty;" http://example.com

282



Referer

When a user clicks on a link on a webpage and the browser takes the user away to the
next URL, it sends the new URL a Referer: header in the new request telling it where it
came from. That is the referer header. The Referer: is misspelled but that is how it is
supposed to be.

With curl you set the referer header with -e or --referer, like this:

curl --referer http://comes-from.example.com https://www.example.com/

283



User-agent

The User-Agent is a header that each client can set in the request to inform the server
which user-agent it is. Sometimes servers look at this header and determine how to act
based on its contents.

The default header value is ‘curl/version’, as in User-Agent: curl/7.54.1 for curl version
7.54.1.

You can set any value you like, using the option -A or --user-agent plus the string to
use or, as it is just a header, -H "User-Agent: foobar/2000".

As comparison, a test version of Firefox on a Linux machine once sent this User-Agent
header:

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:58.0) Gecko/20100101
Firefox/58.0

284



HTTP PUT

The difference between a PUT and a POST is subtle. They are virtually identical
transmissions except for the different method strings. Where POST is meant to pass on
data to a remote resource, PUT is supposed to be the new version of that resource.

In that aspect, PUT is similar to good old standard file upload found in other protocols.
You upload a new version of the resource with PUT. The URL identifies the resource and
you point out the local file to put there:

curl -T localfile http://example.com/new/resource/file

-T implies a PUT and tell curl which file to send off. But the similarities between POST
and PUT also allows you to send a PUT with a string by using the regular curl POST
mechanism using -d but asking for it to use a PUT instead:

curl -d "data to PUT" -X PUT http://example.com/new/resource/file

285



Cookies

HTTP cookies are key/value pairs that a client stores on the behalf of a server. They are
sent back in subsequent requests to allow clients to keep state between requests. Remember
that the HTTP protocol itself has no state but instead the client has to resend all data in
subsequent requests that it wants the server to be aware of.

Cookies are set by the server with the Set-Cookie: header and with each cookie the
server sends a bunch of extra properties that need to match for the client to send the
cookie back. Like domain name and path and perhaps most important for how long the
cookie should live on.

The expiry of a cookie is either set to a fixed time in the future (or to live a number of
seconds) or it gets no expiry at all. A cookie without an expire time is called a session
cookie and is meant to live during the session but not longer. A session in this aspect is
typically thought to be the life time of the browser used to view a site. When you close
the browser, you end your session. Doing HTTP operations with a command-line client
that supports cookies begs the question of when a session really ends. . .

Cookie engine
The general concept of curl only doing the bare minimum unless you tell it differently
makes it not acknowledge cookies by default. You need to switch on the cookie engine
to make curl keep track of cookies it receives and then subsequently send them out on
requests that have matching cookies.

You enable the cookie engine by asking curl to read or write cookies. If you tell curl to
read cookies from blank named file, you only switch on the engine but start off with an
empty internal cookie store:

curl -b "" http://example.com

Just switching on the cookie engine, getting a single resource and then quitting would be
pointless as curl would have no chance to actually send any cookies it received. Assuming
the site in this example would set cookies and then do a redirect we would do:

curl -L -b "" http://example.com

Reading cookies from file
Starting off with a blank cookie store may not be desirable. Why not start off with cookies
you stored in a previous fetch or that you otherwise acquired? The file format curl uses

286



WRITING COOKIES TO FILE 287

for cookies is called the Netscape cookie format because it was once the file format used
by browsers and then you could easily tell curl to use the browser’s cookies.

As a convenience, curl also supports a cookie file being a set of HTTP headers that set
cookies. It is an inferior format but may be the only thing you have.

Tell curl which file to read the initial cookies from:

curl -L -b cookies.txt http://example.com

Remember that this only reads from the file. If the server would update the cookies in its
response, curl would update that cookie in its in-memory store but then eventually throw
them all away when it exits and a subsequent invocation of the same input file would use
the original cookie contents again.

Writing cookies to file
The place where cookies are stored is sometimes referred to as the cookie jar. When you
enable the cookie engine in curl and it has received cookies, you can instruct curl to write
down all its known cookies to a file, the cookie jar, before it exits. It is important to
remember that curl only updates the output cookie jar on exit and not during its lifetime,
no matter how long the handling of the given input takes.

You point out the cookie jar output with -c:

curl -c cookie-jar.txt http://example.com

-c is the instruction to write cookies to a file, -b is the instruction to read cookies from a
file. Oftentimes you want both.

When curl writes cookies to this file, it saves all known cookies including those that are
session cookies (without a given lifetime). curl itself has no notion of a session and it does
not know when a session ends so it does not flush session cookies unless you tell it to.

New cookie session
Instead of telling curl when a session ends, curl features an option that lets the user decide
when a new session begins.

A new cookie session means that all the old session cookies are be thrown away. It is the
equivalent of closing a browser and starting it up again.

Tell curl a new cookie session starts by using -j, --junk-session-cookies:

curl -j -b cookies.txt http://example.com/

• Cookie file format



Cookie file format

Netscape once created a file format for storing cookies on disk so that they would survive
browser restarts. curl adopted that file format to allow sharing the cookies with browsers,
only to soon watch the browsers move away from that format. Modern browsers no longer
use it, while curl still does.

The Netscape cookie file format stores one cookie per physical line in the file with a bunch
of associated meta data, each field separated with TAB. That file is called the cookiejar in
curl terminology.

When libcurl saves a cookiejar, it creates a file header of its own in which there is a URL
mention that links to the web version of this document.

File format
The cookie file format is text based and stores one cookie per line. Lines that start with #
are treated as comments.

Each line that specifies a single cookie consists of seven text fields separated with TAB
characters (ASCII octet 9). A valid line must end with a newline character.

Fields in the file
Field number, what type and example data and the meaning of it:

0. string example.com - the domain name
1. boolean FALSE - include subdomains
2. string /foobar/ - path
3. boolean TRUE - send/receive over HTTPS only
4. number 1462299217 - expires at - seconds since Jan 1st 1970, or 0
5. string person - name of the cookie
6. string daniel - value of the cookie

288



Alternative Services

RFC 7838 defines an HTTP header which lets a server tell a client that there is one or
more alternatives for that server at another place with the use of the Alt-Svc: response
header.

The alternatives the server suggests can include a server running on another port on the
same host, on another completely different hostname and it can even perhaps offer the
service over another protocol.

Enable
To make curl consider offered alternatives, tell curl to use a specific alt-svc cache file like
this:

curl --alt-svc altcache.txt https://example.com/

then curl loads existing alternative service entries from the file at start-up and consider
those when doing HTTP requests, and if the servers sends new or updated Alt-Svc:
headers, curl stores those in the cache at exit.

The alt-svc cache
The alt-svc cache is similar to a cookie jar. It is a text based file that stores one alternative
per line and each entry also has an expiry time for which duration that particular alternative
is valid.

HTTPS only
Alt-Svc: is only trusted and parsed from servers when connected to over HTTPS.

HTTP/3
The use of Alt-Svc: headers is as of August 2019 the only defined way to bootstrap a
client and server into using HTTP/3. The server then hints to the client over HTTP/1
or HTTP/2 that it also is available over HTTP/3 and then curl can connect to it using
HTTP/3 in the subsequent request if the alt-svc cache says so.

289

https://www.rfc-editor.org/rfc/rfc7838.txt


HSTS

HTTP Strict Transport Security, HSTS, is a protocol mechanism that helps to protect
HTTPS servers against man-in-the-middle attacks such as protocol downgrade attacks and
cookie hijacking. It allows an HTTPS server to declare that clients should automatically
interact with this hostname using only HTTPS connections going forward - and explicitly
not use clear text protocols with it.

HSTS cache
The HSTS status for a certain server name is set in a response header and has an expire
time. The status for every HSTS hostname needs to be saved in a file for curl to pick it
up and to update the status and expire time.

Invoke curl and tell it which file to use as a hsts cache:

curl --hsts hsts.txt https://example.com

curl only updates the hsts info if the header is read over a secure transfer, so not when
done over a clear text protocol.

Use HSTS to update insecure protocols
If the cache file now contains an entry for the given hostname, it automatically switches
over to a secure protocol even if you try to connect to it with an insecure one:

curl --hsts hsts.txt http://example.com

290



Scripting browser-like tasks

curl can do almost every HTTP operation and transfer your favorite browser can. It can
actually do a lot more than so as well, but in this chapter we focus on the fact that you
can use curl to reproduce, or script, what you would otherwise have to do manually with
a browser.

Here are some tricks and advice on how to proceed when doing this.

Figure out what the browser does
This is really a necessary first step. Second-guessing what it does risks having you chase
down the wrong problem rat-hole. The scientific approach to this problem pretty much
requires that you first understand what the browser does.

To learn what the browser does to perform a certain task, you can either read the HTML
pages that you operate on and with a deep enough knowledge you can see what a browser
would do to accomplish it and then start trying to do the same with curl.

The slightly more effective way, that also works even for the cases when the page is shock-
full of obfuscated JavaScript, is to run the browser and monitor what HTTP operations it
performs.

The Copy as curl section describes how you can record a browser’s request and easily
convert that to a curl command line.

Those copied curl command lines are often not good enough though since they tend to
copy exactly that request, while you probably want to be a bad bit more dynamic so that
you can reproduce the same operation and not just resend the verbatim request.

Cookies
A lot of the web today works with a user name and password login prompt somewhere. In
many cases you even logged in a while ago with your browser but it has kept the state
and keeps you logged in.

The logged-in state is almost always done by using cookies. A common operation would
be to first login and save the returned cookies in a file, and then let the site update the
cookies in the subsequent command lines when you traverse the site with curl.

291



292 SCRIPTING BROWSER-LIKE TASKS

Web logins and sessions
The site at https://example.com/ features a login prompt. The login on the web site is
an HTML form to which you send a HTTP POST to. Save the response cookies and the
response (HTML) output.

Although the login page is visible (if you would use a browser) on https://example.com/,
the HTML form tag on that page informs you about which exact URL to send the POST
to, using the action parameter.

In our imaginary case, the form tag looks like this:

<form action="login.cgi" method="POST">
<input type="text" name="user">
<input type="password" name="secret">
<input type="hidden" name="id" value="bc76">

</form>

There are three fields of importance. text, secret and id. The last one, the id, is marked
hidden which means that it does not show up in the browser and it is not a field that a
user fills in. It is generated by the site itself, and for your curl login to succeed, you need
extract that value and use that in your POST submission together with the rest of the
data.

Send correct contents to the fields to the correct destination URL:

curl -d user=daniel -d secret=qwerty -d id=bc76 \
https://example.com/login.cgi -o out

Many login pages even send you a session cookie already when presenting the login, and
since you often need to extract the hidden fields from the <form> tag anyway, you could
do something like this first:

curl -c cookies https://example.com/ -o loginform

You would often need an HTML parser or some scripting language to extract the id field
from there and then you can proceed and login as mentioned above, but with the added
cookie loading (I am splitting the line into two lines to make it more readable):

curl -d user=daniel -d secret=qwerty -d id=bc76 \
https://example.com/login.cgi -b cookies -c cookies -o out

You can see that it uses both -b for reading cookies from the file and -c to store cookies
again, for when the server sends back updated cookies.

Always, always, add -v to the command lines when working out the details. See also the
verbose section for more details on that.

Redirects
It is common for servers to use redirects when responding to a login POST. It is so common
I would probably say it is rare that it is not solved with a redirect.

You then just need to remember that curl does not follow redirects automatically. You
need to instruct it to do this by adding the -L command line option. Adding that to the



POST-LOGIN 293

previous command line then makes the full one look like:

curl -d user=daniel -d secret=qwerty -d id=bc76 \
https://example.com/login.cgi -b cookies -c cookies -L -o out

Post-login
In the above example command lines, we save the login response output in a file named
‘out’ and in your script you should probably verify that it contains some text or something
that confirms that the login is successful.

Once successfully logged in, get the files or perform the HTTP operations you need and
remember to keep using both -b and -c on the command lines to use and update the
cookies.

Referer
Some sites verify that the Referer: is actually identifying the legitimate parent URL
when you request something or when you login or similar. You can then inform the server
from which URL you arrived by using -e https://example.com/ etc. Appending that
to the previous login attempt then makes it:

curl -d user=daniel -d secret=qwerty -d id=bc76 \
https://example.com/login.cgi \
-b cookies -c cookies -L -e "https://example.com/" -o out

TLS fingerprinting
Anti-bot detections nowadays use TLS fingerprinting to figure out whether a request
is coming from a browser. Curl’s fingerprint can vary depending on your environment
and most likely is different from those of browsers. Curl’s CLI does not have options to
change all the various parts of the fingerprint, however an advanced user can customize
the fingerprint through the use of libcurl and by compiling curl from source themselves.



Command line FTP

FTP, the File Transfer Protocol, is probably the oldest network protocol that curl supports—
it was created in the early 1970s. The official spec that still is the go-to documentation is
RFC 959, from 1985, published well over a decade before the first curl release.

FTP was created in a different era of the Internet and computers and as such it works a
little bit differently than most other protocols. These differences can often be ignored and
things just works, but they are also important to know at times when things do not run
as planned.

Ping-pong
The FTP protocol is a command and response protocol; the client sends a command and
the server responds. If you use curl’s -v option you get to see all the commands and
responses during a transfer.

For an ordinary transfer, there are something like 5 to 8 commands necessary to send and
as many responses to wait for and read. Perhaps needlessly to say, if the server is in a
remote location there is a lot of time waiting for the ping pong to go through before the
actual file transfer can be set up and get started. For small files, the initial commands can
take longer time than the actual data transfer.

Transfer mode
When an FTP client is about to transfer data, it specifies to the server which transfer
mode it would like the upcoming transfer to use. The two transfer modes curl supports
are ‘ASCII’ and ‘BINARY’. Ascii is for text and usually means that the server sends the
files with converted newlines while binary means sending the data unaltered and assuming
the file is not text.

curl defaults to binary transfer mode for FTP, and you ask for ascii mode instead with
-B, --use-ascii or by making sure the URL ends with ;type=A.

Authentication
FTP is one of the protocols you normally do not access without a user name and password.
It just happens that for systems that allow anonymous FTP access you can login with
pretty much any name and password you like. When curl is used on an FTP URL to do
transfer without any given user name or password, it uses the name anonymous with the
password ftp@example.com.

294

https://www.ietf.org/rfc/rfc959.txt


AUTHENTICATION 295

If you want to provide another user name and password, you can pass them on to curl
either with the -u, --user option or embed the info in the URL:

curl --user daniel:secret ftp://example.com/download

curl ftp://daniel:secret@example.com/download

• FTP Directory listing
• Uploading with FTP
• Custom FTP commands
• Two connections
• Directory traversing
• FTPS



FTP Directory listing

You can list a remote FTP directory with curl by making sure the URL ends with a
trailing slash. If the URL ends with a slash, curl presumes that it is a directory you want
to list. If it is not actually a directory, you are likely to instead get an error.

curl ftp://ftp.example.com/directory/

With FTP there is no standard syntax for the directory output that is returned for this sort
of command that uses the standard FTP command LIST. The listing is usually humanly
readable and perfectly understandable but different servers can return the listing using
slightly different layouts.

One way to get just a listing of all the names in a directory and thus to avoid the special
formatting of the regular directory listings is to tell curl to --list-only (or just -l). curl
then issues the NLST FTP command instead:

curl --list-only ftp://ftp.example.com/directory/

NLST has its own quirks though, as some FTP servers list only actual files in their response
to NLST; they do not include directories and symbolic links.

296



Uploading with FTP

To upload to an FTP server, you specify the entire target file path and name in the
URL, and you specify the local filename to upload with -T, --upload-file. Optionally,
you end the target URL with a slash and then the file component from the local path is
appended by curl and used as the remote filename.

Like:

curl -T localfile ftp://ftp.example.com/dir/path/remote-file

or to use the local filename as the remote name:

curl -T localfile ftp://ftp.example.com/dir/path/

curl also supports globbing in the -T argument so you can opt to easily upload a range of
files:

curl -T ’image[1-99].jpg’ ftp://ftp.example.com/upload/

or a series of files:

curl -T ’{file1,file2}’ ftp://ftp.example.com/upload/

or

curl -T ’{Huey,Dewey,Louie}.jpg’ ftp://ftp.example.com/nephews/

297



Custom FTP commands

The FTP protocol offers a wide variety of different commands that allow the client to
perform actions, other than the plain file transfers that curl is focused on.

A curl user can pass on such extra (custom) commands to the server as a step in the file
transfer sequence. curl even offers to have those commands run at different points in the
process.

Quote
In the old days the standard old ftp client had a command called quote. It was used to
send commands verbatim to the server. curl uses the same name for virtually the same
functionality: send the specified command verbatim to the server. Actually one or more
commands. -Q or --quote.

To know what commands that are available and possible to send to a server, you need
to know a little about the FTP protocol, and possibly read up a bit on RFC 959 on the
details.

To send a simple NOOP to the server (which does nothing) before the transfer starts,
provide it to curl like this:

curl -Q NOOP ftp://example.com/file

To instead send the same command immediately after the transfer, prefix the FTP
command with a dash:

curl -Q -NOOP ftp://example.com/file

curl also offers to send commands after it changes the working directory, just before
the commands that kick off the transfer are sent. To send command then, prefix the
command with a ‘+’ (plus).

A series of commands
You can in fact send commands in all three different times by using multiple -Q on the
command line. You can also send multiple commands in the same position by using more
-Q options.

By default, if any of the given commands returns an error from the server, curl stops its
operations, abort the transfer (if it happens before transfer has started) and not send any
more of the custom commands.

298



FALLIBLE COMMANDS 299

Example, rename a file then do a transfer:

curl -Q "RNFR original" -Q "RNTO newname" ftp://example.com/newname

Fallible commands
You can opt to send individual quote commands that are allowed to fail, to get an error
returned from the server without causing everything to stop.

You make the command fallible by prefixing it with an asterisk (*). For example, send a
delete (DELE) after a transfer and allow it to fail:

curl -Q "-*DELE file" ftp://example.com/moo



Two connections

FTP uses two TCP connections. The first connection is setup by the client when it
connects to an FTP server, and is called the control connection. As the initial connection,
it gets to handle authentication and changing to the correct directory on the remote server,
etc. When the client then is ready to transfer a file, a second TCP connection is established
and the data is transferred over that.

This setting up of a second connection causes nuisances and headaches for several reasons.

Active connections
The client can opt to ask the server to connect to the client to set it up, a so-called active
connection. This is done with the PORT or EPRT commands. Allowing a remote host
to connect back to a client on a port that the client opens up requires that there is no
firewall or other network appliance in between that refuses that to go through and that is
far from always the case. You ask for an active transfer using curl -P [arg] (also known
as --ftp-port in long form) and while the option allows you to specify exactly which
address to use, just setting the same as you come from is almost always the correct choice
and you do that with -P -, like this way to ask for a file:

curl -P - ftp://example.com/foobar.txt

You can also explicitly ask curl to not use EPRT (which is a slightly newer command than
PORT) with the --no-eprt command-line option.

Passive connections
Curl defaults to asking for a passive connection, which means it sends a PASV or EPSV
command to the server and then the server opens up a new port for the second connection
that then curl connects to. Outgoing connections to a new port are generally easier and
less restricted for end users and clients but requires that the network in the server’s end
allows it.

Passive connections are enabled by default, but if you have switched on active before, you
can switch back to passive with --ftp-pasv.

You can also explicitly ask curl not to use EPSV (which is a slightly newer command than
PASV) with the --no-epsv command-line option.

Sometimes the server is running a funky setup so that when curl issues the PASV command
and the server responds with an IP address for curl to connect to, that address is wrong
and then curl fails to setup the data connection. For this (rare) situation, you can ask

300



FIREWALL ISSUES 301

curl to ignore the IP address mentioned in the PASV response (--ftp-skip-pasv-ip)
and instead use the same IP address it has for the control connection even for the second
connection.

Firewall issues
Using either active or passive transfers, any existing firewalls in the network path pretty
much have to have stateful inspection of the FTP traffic to figure out the new port to
open that up and accept it for the second connection.



Directory traversing

When doing FTP commands to traverse the remote file system, there are a few different
ways curl can proceed to reach the target file, the file the user wants to transfer.

multicwd
curl can do one change directory (CWD) command for every individual directory down
the file tree hierarchy. If the full path is one/two/three/file.txt, that method means
doing three CWD commands before asking for the file.txt file to get transferred. This
method thus creates quite a large number of commands if the path is many levels deep.
This method is mandated by an early spec (RFC 1738) and is how curl acts by default:

curl --ftp-method multicwd ftp://example.com/one/two/three/file.txt

This then equals this FTP command/response sequence (simplified):

> CWD one
< 250 OK. Current directory is /one
> CWD two
< 250 OK. Current directory is /one/two
> CWD three
< 250 OK. Current directory is /one/two/three
> RETR file.txt

nocwd
The opposite to doing one CWD for each directory part is to not change the directory at all.
This method asks the server using the entire path at once and is thus fast. Occasionally
servers have a problem with this and it is not purely standards-compliant:

curl --ftp-method nocwd ftp://example.com/one/two/three/file.txt

This then equals this FTP command/response sequence (simplified):

> RETR one/two/three/file.txt

singlecwd
This is the in-between the other two FTP methods. This makes a single CWD command to
the target directory and then it asks for the given file:

curl --ftp-method singlecwd ftp://example.com/one/two/three/file.txt

302



SINGLECWD 303

This then equals this FTP command/response sequence (simplified):

> CWD one/two/three
< 250 OK. Current directory is /one/two/three
> RETR file.txt



FTPS

FTPS is FTP secure by TLS. It negotiates fully secured TLS connections where plain
FTP uses clear text unsafe connections.

There are two ways to do FTPS with curl. The implicit way and the explicit way. (These
terms originate from the FTPS RFC). Usually the server you work with dictates which of
these methods you can and shall use against it.

Implicit FTPS
The implicit way is when you use ftps:// in your URL. This makes curl connect to the
host and do a TLS handshake immediately, without doing anything in the clear. If no
port number is specified in the URL, curl uses port 990 for this. This is usually not how
FTPS is done.

Explicit FTPS
The explicit way of doing FTPS is to keep using an ftp:// URL, but instruct curl to
upgrade the connection into a secure one using the AUTH TLS FTP command.

You can tell curl to either attempt an upgrade and continue as usual if the upgrade fails
with --ssl, or you can force curl to either upgrade or fail the whole thing hard if the
upgrade fails by using --ssl-reqd. We strongly recommend using the latter, so that you
can be sure that a secure transfer is done - if any.

Common FTPS problems
The single most common problem with FTPS comes from the fact that the FTP protocol
(that FTPS transfers lean on) uses a separate connection setup for the data transfer. This
connection is done to another port and when FTP is done over clear text (non-FTPS),
firewalls and network inspectors etc can figure out that this is FTP in progress and they
can adapt things and rules for the new connection.

When the FTP control channel is encrypted with TLS, firewalls cannot see what is going
on and no outsider can dynamically adapt network rules or permission based on this.

304



libcurl

The engine in the curl command-line tool is libcurl. libcurl is also the engine in thousands
of tools, services and applications out there today, performing their Internet data transfers.

C API
libcurl is a library of functions that are provided with a C API, for applications written in
C. You can easily use it from C++ too, with only a few considerations (see libcurl for
C++ programmers). For other languages, there exist bindings that work as intermediate
layers between libcurl the library and corresponding functions for the particular language
you like.

Transfer oriented
We have designed libcurl to be transfer oriented usually without forcing users to be protocol
experts or in fact know much at all about networking or the protocols involved. You setup
a transfer with as many details and specific information as you can and want, and then
you tell libcurl to perform that transfer.

That said, networking and protocols are areas with lots of pitfalls and special cases so the
more you know about these things, the more you are able to understand about libcurl’s
options and ways of working. Not to mention, such knowledge is invaluable when you are
debugging and need to understand what to do next when things do not go as you intended.

The most basic libcurl using application can be as small as just a couple of lines of code,
but most applications do, of course, need more code than that.

Simple by default, more on demand
libcurl generally does the simple and basic transfer by default, and if you want to add
more advanced features, you add that by setting the correct options. For example, libcurl
does not support HTTP cookies by default but it does once you tell it.

This makes libcurl’s behaviors easier to guess and depend on, and also it makes it easier
to maintain old behavior and add new features. Only applications that actually ask for
and use the new features get that behavior.

• Header files
• Global initialization
• API compatibility

305



306 LIBCURL

• –libcurl
• multi-threading
• CURLcode return codes
• Verbose operations
• Caches
• Performance
• for C++ programmers



Header files

There is only ever one header your libcurl using application needs to include:

#include <curl/curl.h>

That file in turn includes a few other public header files but you can pretend they do
not exist. (Historically speaking, we started out slightly different but over time we have
stabilized around this form of only using a single one for includes.)

307



Global initialization

Before you do anything libcurl related in your program, you should do a global libcurl
initialize call with curl_global_init(). This is necessary because some underlying
libraries that libcurl might be using need a call ahead to get setup and initialized properly.

curl_global_init() is, unfortunately, not thread safe, so you must ensure that you only
do it once and never simultaneously with another call. It initializes global state so you
should only call it once, and once your program is completely done using libcurl you can
call curl_global_cleanup() to free and clean up the associated global resources the init
call allocated.

libcurl is built to handle the situation where you skip the curl_global_init() call, but
it does so by calling it itself instead (if you did not do it before any actual file transfer
starts) and it then uses its own defaults. But beware that it is still not thread safe even
then, so it might cause some “interesting” side effects for you. It is much better to call
curl_global_init() yourself in a controlled manner.

308



API compatibility

libcurl promises API stability and guarantees that your program written today remains
working in the future. We do not break compatibility.

Over time, we add features, new options and new functions to the APIs but we do not
change behavior in a non-compatible way or remove functions.

The last time we changed the API in an non-compatible way was for 7.16.0 in 2006 and
we plan to never do it again.

Version numbers
Curl and libcurl are individually versioned, but they mostly follow each other rather
closely.

The version numbering is always built up using the same system:

X.Y.Z

• X is main version number
• Y is release number
• Z is patch number

Bumping numbers
One of these X.Y.Z numbers gets bumped in every new release. The numbers to the right
of a bumped number are reset to zero.

The main version number X is bumped when really big, world colliding changes are made.
The release number Y is bumped when changes are performed or things/features are added.
The patch number Z is bumped when the changes are mere bugfixes.

It means that after a release 1.2.3, we can release 2.0.0 if something really big has been
made, 1.3.0 if not that big changes were made or 1.2.4 if mostly bugs were fixed.

Bumping, as in increasing the number with 1, is unconditionally only affecting one of the
numbers (and the ones to the right of it are set to zero). 1 becomes 2, 3 becomes 4, 9
becomes 10, 88 becomes 89 and 99 becomes 100. So, after 1.2.9 comes 1.2.10. After 3.99.3,
3.100.0 might come.

All original curl source release archives are named according to the libcurl version (not
according to the curl client version that, as said before, might differ).

309



310 API COMPATIBILITY

Which libcurl version
As a service to any application that might want to support new libcurl features while still
being able to build with older versions, all releases have the libcurl version stored in the
curl/curlver.h file using a static numbering scheme that can be used for comparison.
The version number is defined as:

#define LIBCURL_VERSION_NUM 0xXXYYZZ

Where XX , YY and ZZ are the main version, release and patch numbers in hexadecimal.
All three number fields are always represented using two digits (eight bits each). 1.2.0
would appear as 0x010200 while version 9.11.7 appears as 0x090b07.

This 6-digit hexadecimal number is always a greater number in a more recent release. It
makes comparisons with greater than and less than work.

This number is also available as three separate defines: LIBCURL_VERSION_MAJOR,
LIBCURL_VERSION_MINOR and LIBCURL_VERSION_PATCH.

These defines are, of course, only suitable to figure out the version number built just now
and do not help you figuring out which libcurl version that is used at runtime three years
from now.

Which libcurl version runs
To figure out which libcurl version that your application is using right now,
curl_version_info() is there for you.

Applications should use this function to judge if things are possible to do or not, instead
of using compile-time checks, as dynamic/DLL libraries can be changed independent of
applications.

curl_version_info() returns a pointer to a struct with information about version numbers
and various features and in the running version of libcurl. You call it by giving it a
special age counter so that libcurl knows the age of the libcurl that calls it. The age is
a define called CURLVERSION_NOW and is a counter that is increased at irregular intervals
throughout the curl development. The age number tells libcurl what struct set it can
return.

You call the function like this:

curl_version_info_data *version = curl_version_info( CURLVERSION_NOW );

The data then points to struct that has or at least can have the following layout:

struct {
CURLversion age; /* see description below */

/* when ’age’ is 0 or higher, the members below also exist: */
const char *version; /* human readable string */
unsigned int version_num; /* numeric representation */
const char *host; /* human readable string */
int features; /* bitmask, see below */
char *ssl_version; /* human readable string */



WHICH LIBCURL VERSION RUNS 311

long ssl_version_num; /* not used, always zero */
const char *libz_version; /* human readable string */
const char * const *protocols; /* protocols */

/* when ’age’ is 1 or higher, the members below also exist: */
const char *ares; /* human readable string */
int ares_num; /* number */

/* when ’age’ is 2 or higher, the member below also exists: */
const char *libidn; /* human readable string */

/* when ’age’ is 3 or higher (7.16.1 or later), the members below also
exist */

int iconv_ver_num; /* ’_libiconv_version’ if iconv enabled */

const char *libssh_version; /* human readable string */

/* when ’age’ is 4 or higher, the member below also exists: */
unsigned int brotli_ver_num; /* Numeric Brotli version

(MAJOR << 24) | (MINOR << 12) | PATCH */
const char *brotli_version; /* human readable string. */

/* when ’age’ is 5 or higher, the member below also exists: */
unsigned int nghttp2_ver_num; /* Numeric nghttp2 version

(MAJOR << 16) | (MINOR << 8) | PATCH */
const char *nghttp2_version; /* human readable string. */
const char *quic_version; /* human readable quic (+ HTTP/3) library +

version or NULL */

/* when ’age’ is 6 or higher, the member below also exists: */
const char *cainfo; /* built-in default CURLOPT_CAINFO, might

be NULL */
const char *capath; /* built-in default CURLOPT_CAPATH, might

be NULL */

/* when ’age’ is 7 or higher, the member below also exists: */
unsigned int zstd_ver_num; /* Numeric Zstd version

(MAJOR << 24) | (MINOR << 12) | PATCH */
const char *zstd_version; /* human readable string. */

/* when ’age’ is 8 or higher, the member below also exists: */
const char *hyper_version; /* human readable string. */

} curl_version_info_data;



–libcurl

We actively encourage users to first try out the transfer they want to do with the curl
command-line tool, and once it works roughly the way you want it to, you append the
--libcurl [filename] option to the command line and run it again.

The --libcurl command-line option creates a C program in the provided file name. That
C program is an application that uses libcurl to run the transfer you just had the curl
command-line tool do. There are some exceptions and it is not always a 100% match, but
you might find that it can serve as an excellent inspiration source for what libcurl options
you want or can use and what additional arguments to provide to them.

If you specify the filename as a single dash, as in --libcurl - you get the program written
to stdout instead of a file.

As an example, we run a command to get http://example.com:

curl http://example.com --libcurl example.c

This creates example.c in the current directory, looking similar to this:

/********* Sample code generated by the curl command-line tool **********
* All curl_easy_setopt() options are documented at:
* https://curl.se/libcurl/c/curl_easy_setopt.html
************************************************************************/
#include <curl/curl.h>

int main(int argc, char *argv[])
{

CURLcode ret;
CURL *hnd;

hnd = curl_easy_init();
curl_easy_setopt(hnd, CURLOPT_URL, "http://example.com");
curl_easy_setopt(hnd, CURLOPT_NOPROGRESS, 1L);
curl_easy_setopt(hnd, CURLOPT_USERAGENT, "curl/7.45.0");
curl_easy_setopt(hnd, CURLOPT_MAXREDIRS, 50L);
curl_easy_setopt(hnd, CURLOPT_SSH_KNOWNHOSTS,

"/home/daniel/.ssh/known_hosts");
curl_easy_setopt(hnd, CURLOPT_TCP_KEEPALIVE, 1L);

/* Here is a list of options the curl code used that cannot get
generated as source easily. You may select to either not use them or
implement them yourself.

312



313

CURLOPT_WRITEDATA set to a objectpointer
CURLOPT_WRITEFUNCTION set to a functionpointer
CURLOPT_READDATA set to a objectpointer
CURLOPT_READFUNCTION set to a functionpointer
CURLOPT_SEEKDATA set to a objectpointer
CURLOPT_SEEKFUNCTION set to a functionpointer
CURLOPT_ERRORBUFFER set to a objectpointer
CURLOPT_STDERR set to a objectpointer
CURLOPT_HEADERFUNCTION set to a functionpointer
CURLOPT_HEADERDATA set to a objectpointer

*/

ret = curl_easy_perform(hnd);

curl_easy_cleanup(hnd);
hnd = NULL;

return (int)ret;
}
/**** End of sample code ****/



multi-threading

libcurl is thread safe but has no internal thread synchronization. You may have to provide
your own locking or change options to properly use libcurl threaded. Exactly what is
required depends on how libcurl was built. Please refer to the libcurl thread safety webpage,
which contains the latest information.

314

https://curl.se/libcurl/c/threadsafe.html


CURLcode return codes

Many libcurl functions return a CURLcode. That is a special libcurl typedefed variable
for error codes. It returns CURLE_OK (which has the value zero) if everything is fine and
dandy and it returns a non-zero number if a problem was detected. There are almost one
hundred CURLcode errors in use, and you can find them all in the curl/curl.h header
file and documented in the libcurl-errors man page.

You can convert a CURLcode into a human readable string with the curl_easy_strerror()
function—but be aware that these errors are rarely phrased in a way that is suitable for
anyone to expose in a UI or to an end user:

const char *str = curl_easy_strerror( error );
printf("libcurl said %s\n", str);

Another way to get a slightly better error text in case of errors is to set the
CURLOPT_ERRORBUFFER option to point out a buffer in your program and then libcurl
stores a related error message there before it returns an error:

char error[CURL_ERROR_SIZE]; /* needs to be at least this big */
CURLcode ret = curl_easy_setopt(handle, CURLOPT_ERRORBUFFER, error);

315



Verbose operations

Okay, we just showed how to get the error as a human readable text as that is an excellent
help to figure out what went wrong in a particular transfer and often explains why it can
be done like that or what the problem is for the moment.

The next lifesaver when writing libcurl applications that everyone needs to know about
and needs to use extensively, at least while developing libcurl applications or debugging
libcurl itself, is to enable verbose mode with CURLOPT_VERBOSE:

CURLcode ret = curl_easy_setopt(handle, CURLOPT_VERBOSE, 1L);

When libcurl is told to be verbose it outputs transfer-related details and information to
stderr while the transfer is ongoing. This is awesome to figure out why things fail and
to learn exactly what libcurl does when you ask it different things. You can redirect the
output elsewhere by changing stderr with CURLOPT_STDERR or you can get even more info
in a fancier way with the debug callback (explained further in a later section).

Trace everything
Verbose is certainly fine, but sometimes you need more. libcurl also offers a trace callback
that in addition to showing you all the stuff the verbose mode does, it also passes on all
data sent and received so that your application gets a full trace of everything.

The sent and received data passed to the trace callback is given to the callback in its
unencrypted form, which can be handy when working with TLS or SSH based protocols
when capturing the data off the network for debugging is not practical.

When you set the CURLOPT_DEBUGFUNCTION option, you still need to have CURLOPT_VERBOSE
enabled but with the trace callback set libcurl uses that callback instead of its internal
handling.

The trace callback should match a prototype like this:

int my_trace(CURL *handle, curl_infotype type, char *data, size_t size,
void *user);

handle is the easy handle it concerns, type describes the particular data passed to
the callback (data in/out, header in/out, TLS data in/out and text), data is a pointer
pointing to the data being size number of bytes. user is the custom pointer you set with
CURLOPT_DEBUGDATA.

The data pointed to by data is not null terminated, but is exactly of the size as told by
the size argument.

316



TRACE MORE 317

The callback must return 0 or libcurl considers it an error and aborts the transfer.

On the curl website, we host an example called debug.c that includes a simple trace
function to get inspiration from.

There are also additional details in the CURLOPT_DEBUGFUNCTION man page.

Transfer and connection identifiers
As the trace information flow passed to the debug callback is a continuous stream even
though your application might make libcurl use a large number of separate connections
and different transfers, there are times when you want to see to which specific transfers or
connections the various information belong to. To better understand the trace output.

You can then get the transfer and connection identifiers from within the callback:

curl_off_t conn_id;
curl_off_t xfer_id;
res = curl_easy_getinfo(curl, CURLINFO_CONN_ID, &conn_id);
res = curl_easy_getinfo(curl, CURLINFO_XFER_ID, &xfer_id);

They are two separate identifiers because connections can be reused and multiple transfers
can use the same connection. Using these identifiers (numbers really), you can see which
logs are associated with which transfers and connections.

Trace more
If the default amount of tracing data passed to the debug callback is not enough. Like
when you suspect and want to debug a problem in a more fundamental lower protocol
level, libcurl provides the curl_global_trace() function for you.

With this function you tell libcurl to also include detailed logging about components that
it otherwise does not include by default. Such as details about TLS, HTTP/2 or HTTP/3
protocol bits.

The curl_global_trace() functions takes an argument where you specify a string holding
a comma-separated list with the areas you want it to trace. For example, include TLS
and HTTP/2 details:

/* log details of HTTP/2 and SSL handling */
curl_global_trace("http/2,ssl");

The exact set of options varies, but here are some ones to try:

area description
all show everything possible
tls TLS protocol exchange details
http/2 HTTP/2 frame information
http/3 HTTP/3 frame information
* additional ones in future versions

https://curl.se/libcurl/c/debug.html
https://curl.se/libcurl/c/CURLOPT_DEBUGFUNCTION.html


318 VERBOSE OPERATIONS

Doing a quick run with all is often a good way to get to see which specific areas that are
shown, as then you can do follow-up runs with more specific areas set.



Caches

libcurl caches different information in order to help subsequent transfers to perform faster.
There are four key caches: DNS, connections, TLS sessions and CA certs.

When the multi interface is used, these caches are by default shared among all the easy
handles that are added to that single multi handle, and when the easy interface is used
they are kept within that handle.

You can instruct libcurl to share some of the caches with the share interface.

DNS cache
When libcurl resolves a hostname to one or more IP addresses, that is stored in the DNS
cache so that subsequent transfers in the near term do not have to redo the same resolve
again. A name resolve can easily take several hundred milliseconds and sometimes even
much longer.

By default, each such hostname is stored in the cache for 60 seconds (changeable with
CURLOPT_DNS_CACHE_TIMEOUT).

libcurl does in fact not usually know what the TTL (Time To Live) value is for DNS
entries, as that is generally not exposed in the system function calls it uses for this purpose,
so increasing this value come with a risk that libcurl keeps using stale addresses longer
periods than necessary.

Connection cache
Also sometimes referred to as the connection pool. This is a collection of previously
used connections that instead of being closed after use, are kept around alive so that
subsequent transfers that are targeting the same host name and have several other checks
also matching, can use them instead of creating a new connection.

A reused connection usually saves having to a DNS lookup, setting up a TCP connection,
do a TLS handshake and more.

Connections are only reused if the name is identical. Even if two different host names
resolve to the same IP addresses, they still always use two separate connections with
libcurl.

Since the connection reuse is based on the hostname and the DNS resolve phase is entirely
skipped when a connection is reused for a transfer, libcurl does not know the current state

319



320 CACHES

of the hostname in DNS as it can in fact change IP over time while the connection might
survive and continue to get reused over the original IP address.

The size of the connection cache - the number of live connections to keep there - can be set
with CURLOPT_MAXCONNECTS (default is 5) for easy handles and CURLMOPT_MAXCONNECTS
for multi handles. The default size for multi handles is 4 times the number of easy handles
added.

TLS session cache
TLS session IDs and tickets are special TLS mechanisms that a client can pass to a server
to shortcut subsequent TLS handshakes to a server it previously established a connection
to.

libcurl caches session IDs and tickets associated with host names and port numbers, so if
a subsequent connection attempt is made to a host for which libcurl has a cached ID or
ticket, using that can greatly decrease the TLS handshake process and therefore the time
needed until completion.

CA cert cache
With some of the TLS backends curl supports (OpenSSL and Schannel), it builds a CA
cert store cache in memory and keeps it there for subsequent transfers to use. This lets
transfers skip unnecessary loading and parsing time that comes from loading and handling
the sometimes rather big CA cert bundles.

Since the CA cert bundle might be updated, the life-time of the cache is by default set to
24 hours so that long-running applications will flush the cache and reload the file at least
once every day - to be able to load and use a new version of the store.

Applications can change the CA cert cache timeout with the CURLOPT_CA_CACHE_TIMEOUT
option in case this default is not good enough.



Performance

This section collects general advice on what you can do as an application author to get
the maximum performance out of libcurl.

libcurl is designed and intended to run as fast as possible by default. You are expected
to get top performance already without doing anything extra in particular. There are
however some common things to look at or perhaps mistakes to avoid.

reuse handles
This is a general mantra whenever libcurl is discussed. If you use the easy interface, the
primary key to high performance is to reuse the handles when doing subsequent transfers.
That lets libcurl reuse connections, reuse TLS sessions, use its DNS cache as much as
possible and more.

buffer sizes
If you download data, set the CURLOPT_BUFFERSIZE to a suitable size. It is on the smaller
size from start and especially on high speed transfers, you might be able to get more out
of libcurl by increase its size. We encourage you to try out a few sizes in a benchmark
with your use case.

Similarly, if you upload data you might want to adjust the CURLOPT_UPLOAD_BUFFERSIZE
for the same reasons.

pool size
The number of live connections kept in the connection pool that you set with
CURLOPT_MAXCONNECTS can be interesting to tweak. Depending of course how your
application uses connections, but if it for example iterates over N hostnames in a short
period of time, it could make sense for you to make sure that libcurl can keep all those
connections alive.

make callbacks as fast as possible
In high speed data downloads, the write callback is called many times. If this function
is not written to execute the fastest possible way, there is a risk that this function alone
makes all transfers slower than they otherwise could be.

321



322 PERFORMANCE

The same of course goes for the read callback for uploads.

Avoid doing complicated logic or use locks/mutexes in your libcurl callbacks.

share data
If you use multiple easy handles, you can still share data and caches between them in
order to increase performance. Take a closer look at the share API.

threads
If your transfer thread ends up consuming 100% CPU, then you might benefit from
distributing the load onto multiple threads to increase bandwidth.

Normally then, you want to make each thread do transfers as independently as possible
to avoid them interfering with each other’s performance or risk getting into thread-safe
problems due to shared handles. Try to make the same hostnames get transferred on the
same thread so that connection reuse can be optimized.

curl_multi_socket_action

If your application performs many parallel transfers, like more than a hundred concurrent
ones or so, then you must consider switching to the curl_multi_socket_action() and
the event based API instead of the “regular” multi API. That allows and pushes you to
use an event based approach which lets your application avoid both poll() and select(),
which is key to high performance combined with a high degree of parallelism.



for C++ programmers

libcurl provides a C API. C and C++ are similar but not the same. There are a few things
to keep in mind when using libcurl in C++.

Strings are C strings, not C++ string objects
When you pass strings to libcurl’s APIs that accept char * that means you cannot pass
in C++ strings or objects to those functions.

For example, if you build a string with C++ and then want that string used as a URL:

std::string url = "https://example.com/foo.asp?name=" + i;
curl_easy_setopt(curl, CURLOPT_URL, url.c_str());

Callback considerations
Since libcurl is a C library, it does not know anything about C++ member functions or
objects. You can overcome this limitation with relative ease using for a static member
function that is passed a pointer to the class.

Here’s an example of a write callback using a C++ method as callback:

// f is the pointer to your object.
static size_t YourClass::func(void *buffer, size_t sz, size_t n, void *f)
{

// Call non-static member function.
static_cast<YourClass*>(f)->nonStaticFunction();

}

// This is how you pass pointer to the static function:
curl_easy_setopt(hcurl, CURLOPT_WRITEFUNCTION, YourClass::func);
curl_easy_setopt(hcurl, CURLOPT_WRITEDATA, this);

323



libcurl transfers

In this chapter we go through the steps on how to make Internet transfers with libcurl.
The core function.

• Easy handle
• curl easy options
• Drive transfers
• Callbacks
• Connection control
• Transfer control
• Cleanup
• Post transfer info

324



Easy handle

The fundamentals you need to learn with libcurl:

First you create an “easy handle”, which is your handle to a transfer, really:

CURL *easy_handle = curl_easy_init();

You then set options in that handle to control the upcoming transfer. This example sets
the URL:

/* set URL to operate on */
res = curl_easy_setopt(easy_handle, CURLOPT_URL, "http://example.com/");

If curl_easy_setopt() returns CURLE_OK, we know it stored the option fine.

Creating the easy handle and setting options on it does not make any transfer happen,
and usually do not even make much more happen other than libcurl storing your wish to
be used later when the transfer actually occurs. Lots of syntax checking and validation of
the input may also be postponed, so just because curl_easy_setopt did not complain, it
does not mean that the input was correct and valid; you may get an error returned later.

Read more on easy options in its separate section.

When you are done setting options to your easy handle, you can fire off the actual transfer.

The actual performing of the transfer can be done using different methods and function
calls, depending on what kind of behavior you want in your application and how libcurl is
best integrated into your architecture. Those are further described later in this chapter.

While the transfer is ongoing, libcurl calls your specified functions—known as callbacks —
to deliver data, to read data and to do a variety of things.

After the transfer has completed, you can figure out if it succeeded or not and you can
extract statistics and other information that libcurl gathered during the transfer from the
easy handle. See Post transfer information.

Reuse
Easy handles are meant and designed to be reused. When you have done a single transfer
with the easy handle, you can immediately use it again for your next transfer. There are
lots of gains to be had by this.

All options are “sticky”. If you make a second transfer with the same handle, the same
options are used. They remain set in the handle until you change them again, or call
curl_easy_reset() on the handle.

325



326 EASY HANDLE

Reset
By calling curl_easy_reset(), all options for the given easy handle are reset and restored
to their default values. The same values the options had when the handle was initially
created. The caches remain intact.

Duplicate
An easy handle, with all its currently set options, can be duplicated using
curl_easy_duphandle(). It returns a copy of the handle passed in to it.

The caches and other state information are not carried over.



curl easy options

You set options in the easy handle to control how that transfer is going to be done, or
in some cases you can actually set options and modify the transfer’s behavior while it
is in progress. You set options with curl_easy_setopt() and you provide the handle,
the option you want to set and the argument to the option. All options take exactly one
argument and you must always pass exactly three parameters to the curl_easy_setopt()
calls.

Since the curl_easy_setopt() call accepts several hundred different options and the
various options accept a variety of different types of arguments, it is important to read
up on the specifics and provide exactly the argument type the specific option supports
and expects. Passing in the wrong type can lead to unexpected side-effects or hard to
understand hiccups.

The perhaps most important option that every transfer needs, is the URL. libcurl cannot
perform a transfer without knowing which URL it concerns so you must tell it. The
URL option name is CURLOPT_URL as all options are prefixed with CURLOPT_ and then the
descriptive name — all using uppercase letters. An example line setting the URL to get
the http://example.com HTTP contents could look like:

CURLcode ret = curl_easy_setopt(easy, CURLOPT_URL, "http://example.com");

Again: this only sets the option in the handle. It does not do the actual transfer or
anything. It just tells libcurl to copy the given string and if that works it returns OK.

It is, of course, good form to check the return code to see that nothing went wrong.

Get options
There is no way to extract the values previously set with curl_easy_setopt(). If you
need to be able to extract the information again that you set earlier, we encourage you to
keep track of that data yourself in your application.

• Set numerical options
• Set string options
• TLS options
• All options
• Get option information

327



Set numerical options

Since curl_easy_setopt() is a vararg function where the 3rd argument can use different
types depending on the situation, normal C language type conversion cannot be done.
You must make sure that you truly pass a long and not an int if the documentation tells
you so. On architectures where they are the same size, you may not get any problems but
not all work like that. Similarly, for options that accept a curl_off_t type, it is crucial
that you pass in an argument using that type and no other.

Enforce a long:

curl_easy_setopt(handle, CURLOPT_TIMEOUT, 5L); /* 5 seconds timeout */

Enforce a curl_off_t:

curl_off_t no_larger_than = 0x50000;
curl_easy_setopt(handle, CURLOPT_MAXFILESIZE_LARGE, no_larger_than);

328



Set string options

There are currently over 80 options for curl_easy_setopt() that accept a string as its
third argument.

When a string is set in a handle, libcurl immediately copies that data so that the application
does not have to keep the data around for the time the transfer is being done - with one
notable exception: CURLOPT_POSTFIELDS.

Set a URL in the handle:

curl_easy_setopt(handle, CURLOPT_URL, "https://example.com");

CURLOPT_POSTFIELDS

The exception to the rule that libcurl always copies data, CURLOPT_POSTFIELDS only stores
the pointer to the data, meaning an application using this option must keep the memory
around for the entire duration of the associated transfer.

If that is problematic, an alternative is to instead use CURLOPT_COPYPOSTFIELDS which
copies the data. If the data is binary and does not stop at the first presence of a null byte,
make sure that CURLOPT_POSTFIELDSIZE is set before this option is used.

Why?
The reason CURLOPT_POSTFIELDS is an exception is due to legacy. Originally (before curl
7.17.0), libcurl did not copy any string arguments and when this current behavior was
introduced, this option could not be converted over without breaking behavior so it had
to keep working like before. Which now sticks out, as no other option does. . .

C++
If you use libcurl from a C++ program, it is important to remember that you cannot pass
in a string object where libcurl expects a string. It has to be a null terminated C string.
Usually you can make this happen with the c_str() method.

For example, keep the URL in a string object and set that in the handle:

std::string url("https://example.com/");
curl_easy_setopt(curl, CURLOPT_URL, url.c_str());

329



TLS options

At the time of writing this, there are no less than forty different options for
curl_easy_setopt that are dedicated for controlling how libcurl does SSL and TLS.

Transfers done using TLS use safe defaults but since curl is used in many different scenarios
and setups, chances are you end up in situations where you want to change those behaviors.

Protocol version
With CURLOPT_SSLVERSION' andCURLOPT_PROXY_SSLVERSION‘you can specify
which SSL or TLS protocol range that is acceptable to you. Traditionally SSL and TLS
protocol versions have been found detect and unsuitable for use over time and even if curl
itself raises its default lower version over time you might want to opt for only using the
latest and most security protocol versions.

These options take a lowest acceptable version and optionally a maximum. If the server
cannot negotiate a connection with that condition, the transfer fails.

Example:

curl_easy_setopt(easy, CURLOPT_SSLVERSION, CURL_SSLVERSION_TLSv1_2);

Protocol details and behavior
You can select what ciphers to use by setting CURLOPT_SSL_CIPHER_LIST and
CURLOPT_PROXY_SSL_CIPHER_LIST.

You can ask to enable SSL “False Start” with CURLOPT_SSL_FALSESTART, and there are a
few other behavior changes to tweak using CURLOPT_SSL_OPTIONS.

Verification
A TLS-using client needs to verify that the server it speaks to is the correct and trusted one.
This is done by verifying that the server’s certificate is signed by a Certificate Authority
(CA) for which curl has a public key for and that the certificate contains the server’s name.
Failing any of these checks cause the transfer to fail.

For development purposes and for experimenting, curl allows an application to switch off
either or both of these checks for the server or for an HTTPS proxy.

• CURLOPT_SSL_VERIFYPEER controls the check that the certificate is signed by a
trusted CA.

330



AUTHENTICATION 331

• CURLOPT_SSL_VERIFYHOST controls the check for the name within the certificate.

• CURLOPT_PROXY_SSL_VERIFYPEER is the proxy version of CURLOPT_SSL_VERIFYPEER.

• CURLOPT_PROXY_SSL_VERIFYHOST is the proxy version of CURLOPT_SSL_VERIFYHOST.

Optionally, you can tell curl to verify the certificate’s public key against a known hash using
CURLOPT_PINNEDPUBLICKEY or CURLOPT_PROXY_PINNEDPUBLICKEY. Here too, a mismatch
causes the transfer to fail.

Authentication

TLS Client certificates
When using TLS and the server asks the client to authenticate using certificates, you typi-
cally specify the private key and the corresponding client certificate using CURLOPT_SSLKEY
and CURLOPT_SSLCERT. The password for the key is usually also required to be set, with
CURLOPT_SSLKEYPASSWD.

Again, the same set of options exist separately for connections to HTTPS proxies:
CURLOPT_PROXY_SSLKEY, CURLOPT_PROXY_SSLCERT etc.

TLS auth
TLS connections offer a (rarely used) feature called Secure Remote Passwords. Using this,
you authenticate the connection for the server using a name and password and the options
are called CURLOPT_TLSAUTH_USERNAME and CURLOPT_TLSAUTH_PASSWORD.

STARTTLS
For protocols that are using the STARTTLS method to upgrade the connection to TLS
(FTP, IMAP, POP3, and SMTP), you usually tell curl to use the non-TLS version of the pro-
tocol when specifying a URL and then ask curl to enable TLS with the CURLOPT_USE_SSL
option.

This option allows a client to let curl continue if it cannot upgrade to TLS, but that is
not a recommend path to walk as then you might be using an insecure protocol without
properly noticing.

/* require use of SSL for this, or fail */
curl_easy_setopt(curl, CURLOPT_USE_SSL, CURLUSESSL_ALL);



All options

This is a table of available options for curl_easy_setopt().

Option Purpose
CURLOPT_ABSTRACT_UNIX_SOCKET abstract Unix domain socket
CURLOPT_ACCEPT_ENCODING automatic decompression of HTTP downloads
CURLOPT_ACCEPTTIMEOUT_MS timeout waiting for FTP server to connect back
CURLOPT_ADDRESS_SCOPE scope id for IPv6 addresses
CURLOPT_ALTSVC_CTRL control alt-svc behavior
CURLOPT_ALTSVC alt-svc cache filename
CURLOPT_APPEND append to the remote file
CURLOPT_AUTOREFERER automatically update the referer header
CURLOPT_AWS_SIGV4 V4 signature
CURLOPT_BUFFERSIZE receive buffer size
CURLOPT_CA_CACHE_TIMEOUT life-time for cached certificate stores
CURLOPT_CAINFO_BLOB Certificate Authority (CA) bundle in PEM

format
CURLOPT_CAINFO path to Certificate Authority (CA) bundle
CURLOPT_CAPATH directory holding CA certificates
CURLOPT_CERTINFO request SSL certificate information
CURLOPT_CHUNK_BGN_FUNCTION callback before a transfer with FTP

wildcardmatch
CURLOPT_CHUNK_DATA pointer passed to the FTP chunk callbacks
CURLOPT_CHUNK_END_FUNCTION callback after a transfer with FTP

wildcardmatch
CURLOPT_CLOSESOCKETDATA pointer passed to the socket close callback
CURLOPT_CLOSESOCKETFUNCTION callback to socket close replacement
CURLOPT_CONNECT_ONLY stop when connected to target server
CURLOPT_CONNECT_TO connect to a specific host and port instead of

the URL’s host and port
CURLOPT_CONNECTTIMEOUT_MS timeout for the connect phase
CURLOPT_CONNECTTIMEOUT timeout for the connect phase
CURLOPT_CONV_FROM_NETWORK_FUNCTIONconvert data from network to host encoding
CURLOPT_CONV_FROM_UTF8_FUNCTION convert data from UTF8 to host encoding
CURLOPT_CONV_TO_NETWORK_FUNCTION convert data to network from host encoding
CURLOPT_COOKIE HTTP Cookie header
CURLOPT_COOKIEFILE filename to read cookies from
CURLOPT_COOKIEJAR filename to store cookies to
CURLOPT_COOKIELIST add to or manipulate cookies held in memory
CURLOPT_COOKIESESSION start a new cookie session

332



333

Option Purpose
CURLOPT_COPYPOSTFIELDS have libcurl copy data to POST
CURLOPT_CRLF CRLF conversion
CURLOPT_CRLFILE Certificate Revocation List file
CURLOPT_CURLU URL in CURLU * format
CURLOPT_CUSTOMREQUEST custom request method
CURLOPT_DEBUGDATA pointer passed to the debug callback
CURLOPT_DEBUGFUNCTION debug callback
CURLOPT_DEFAULT_PROTOCOL default protocol to use if the URL is missing a
CURLOPT_DIRLISTONLY ask for names only in a directory listing
CURLOPT_DISALLOW_USERNAME_IN_URL disallow specifying username in the URL
CURLOPT_DNS_CACHE_TIMEOUT life-time for DNS cache entries
CURLOPT_DNS_INTERFACE interface to speak DNS over
CURLOPT_DNS_LOCAL_IP4 IPv4 address to bind DNS resolves to
CURLOPT_DNS_LOCAL_IP6 IPv6 address to bind DNS resolves to
CURLOPT_DNS_SERVERS DNS servers to use
CURLOPT_DNS_SHUFFLE_ADDRESSES shuffle IP addresses for hostname
CURLOPT_DNS_USE_GLOBAL_CACHE global DNS cache
CURLOPT_DOH_SSL_VERIFYHOST verify the hostname in the DoH SSL certificate
CURLOPT_DOH_SSL_VERIFYPEER verify the DoH SSL certificate
CURLOPT_DOH_SSL_VERIFYSTATUS verify the DoH SSL certificate’s status
CURLOPT_DOH_URL provide the DNS-over-HTTPS URL
CURLOPT_EGDSOCKET EGD socket path
CURLOPT_ERRORBUFFER error buffer for error messages
CURLOPT_EXPECT_100_TIMEOUT_MS timeout for Expect: 100-continue response
CURLOPT_FAILONERROR request failure on HTTP response >= 400
CURLOPT_FILETIME get the modification time of the remote resource
CURLOPT_FNMATCH_DATA pointer passed to the fnmatch callback
CURLOPT_FNMATCH_FUNCTION wildcard match callback
CURLOPT_FOLLOWLOCATION follow HTTP 3xx redirects
CURLOPT_FORBID_REUSE make connection get closed at once after use
CURLOPT_FRESH_CONNECT force a new connection to be used
CURLOPT_FTP_ACCOUNT account info for FTP
CURLOPT_FTP_ALTERNATIVE_TO_USER command to use instead of USER with FTP
CURLOPT_FTP_CREATE_MISSING_DIRS create missing dirs for FTP and SFTP
CURLOPT_FTP_FILEMETHOD select directory traversing method for FTP
CURLOPT_FTP_RESPONSE_TIMEOUT time allowed to wait for FTP response
CURLOPT_FTP_SKIP_PASV_IP ignore the IP address in the PASV response
CURLOPT_FTP_SSL_CCC switch off SSL again with FTP after auth
CURLOPT_FTP_USE_EPRT use EPRT for FTP
CURLOPT_FTP_USE_EPSV use EPSV for FTP
CURLOPT_FTP_USE_PRET use PRET for FTP
CURLOPT_FTPPORT make FTP transfer active
CURLOPT_FTPSSLAUTH order in which to attempt TLS vs SSL
CURLOPT_GSSAPI_DELEGATION allowed GSS-API delegation
CURLOPT_HAPPY_EYEBALLS_TIMEOUT_MShead start for ipv6 for happy eyeballs
CURLOPT_HAPROXY_CLIENT_IP set HAProxy PROXY protocol client IP
CURLOPT_HAPROXYPROTOCOL send HAProxy PROXY protocol v1 header
CURLOPT_HEADER pass headers to the data stream



334 ALL OPTIONS

Option Purpose
CURLOPT_HEADERDATA pointer to pass to header callback
CURLOPT_HEADERFUNCTION callback that receives header data
CURLOPT_HEADEROPT send HTTP headers to both proxy and host or

separately
CURLOPT_HSTS_CTRL control HSTS behavior
CURLOPT_HSTS HSTS cache filename
CURLOPT_HSTSREADDATA pointer passed to the HSTS read callback
CURLOPT_HSTSREADFUNCTION read callback for HSTS hosts
CURLOPT_HSTSWRITEDATA pointer passed to the HSTS write callback
CURLOPT_HSTSWRITEFUNCTION write callback for HSTS hosts
CURLOPT_HTTP09_ALLOWED allow HTTP/0.9 response
CURLOPT_HTTP200ALIASES alternative matches for HTTP 200 OK
CURLOPT_HTTP_CONTENT_DECODING HTTP content decoding control
CURLOPT_HTTP_TRANSFER_DECODING HTTP transfer decoding control
CURLOPT_HTTP_VERSION HTTP protocol version to use
CURLOPT_HTTPAUTH HTTP server authentication methods to try
CURLOPT_HTTPGET ask for an HTTP GET request
CURLOPT_HTTPHEADER set of HTTP headers
CURLOPT_HTTPPOST multipart formpost content
CURLOPT_HTTPPROXYTUNNEL tunnel through HTTP proxy
CURLOPT_IGNORE_CONTENT_LENGTH ignore content length
CURLOPT_INFILESIZE_LARGE size of the input file to send off
CURLOPT_INFILESIZE size of the input file to send off
CURLOPT_INTERFACE source interface for outgoing traffic
CURLOPT_INTERLEAVEDATA pointer passed to RTSP interleave callback
CURLOPT_INTERLEAVEFUNCTION callback for RTSP interleaved data
CURLOPT_IOCTLDATA pointer passed to I/O callback
CURLOPT_IOCTLFUNCTION callback for I/O operations
CURLOPT_IPRESOLVE IP protocol version to use
CURLOPT_ISSUERCERT_BLOB issuer SSL certificate from memory blob
CURLOPT_ISSUERCERT issuer SSL certificate filename
CURLOPT_KEEP_SENDING_ON_ERROR keep sending on early HTTP response >= 300
CURLOPT_KEYPASSWD passphrase to private key
CURLOPT_KRBLEVEL FTP kerberos security level
CURLOPT_LOCALPORT local port number to use for socket
CURLOPT_LOCALPORTRANGE number of additional local ports to try
CURLOPT_LOGIN_OPTIONS login options
CURLOPT_LOW_SPEED_LIMIT low speed limit in bytes per second
CURLOPT_LOW_SPEED_TIME low speed limit time period
CURLOPT_MAIL_AUTH SMTP authentication address
CURLOPT_MAIL_FROM SMTP sender address
CURLOPT_MAIL_RCPT_ALLOWFAILS allow RCPT TO command to fail for some

recipients
CURLOPT_MAIL_RCPT list of SMTP mail recipients
CURLOPT_MAX_RECV_SPEED_LARGE rate limit data download speed
CURLOPT_MAX_SEND_SPEED_LARGE rate limit data upload speed
CURLOPT_MAXAGE_CONN max idle time allowed for reusing a connection
CURLOPT_MAXCONNECTS maximum connection cache size



335

Option Purpose
CURLOPT_MAXFILESIZE_LARGE maximum file size allowed to download
CURLOPT_MAXFILESIZE maximum file size allowed to download
CURLOPT_MAXLIFETIME_CONN max lifetime (since creation) allowed for

reusing a connection
CURLOPT_MAXREDIRS maximum number of redirects allowed
CURLOPT_MIME_OPTIONS set MIME option flags
CURLOPT_MIMEPOST send data from mime structure
CURLOPT_NETRC_FILE filename to read .netrc info from
CURLOPT_NETRC enable use of .netrc
CURLOPT_NEW_DIRECTORY_PERMS permissions for remotely created directories
CURLOPT_NEW_FILE_PERMS permissions for remotely created files
CURLOPT_NOBODY do the download request without getting the

body
CURLOPT_NOPROGRESS switch off the progress meter
CURLOPT_NOPROXY disable proxy use for specific hosts
CURLOPT_NOSIGNAL skip all signal handling
CURLOPT_OPENSOCKETDATA pointer passed to open socket callback
CURLOPT_OPENSOCKETFUNCTION callback for opening socket
CURLOPT_PASSWORD password to use in authentication
CURLOPT_PATH_AS_IS do not handle dot dot sequences
CURLOPT_PINNEDPUBLICKEY pinned public key
CURLOPT_PIPEWAIT wait for pipelining/multiplexing
CURLOPT_PORT remote port number to connect to
CURLOPT_POST make an HTTP POST
CURLOPT_POSTFIELDS data to POST to server
CURLOPT_POSTFIELDSIZE_LARGE size of POST data pointed to
CURLOPT_POSTFIELDSIZE size of POST data pointed to
CURLOPT_POSTQUOTE (S)FTP commands to run after the transfer
CURLOPT_POSTREDIR how to act on an HTTP POST redirect
CURLOPT_PRE_PROXY pre-proxy host to use
CURLOPT_PREQUOTE commands to run before an FTP transfer
CURLOPT_PREREQDATA pointer passed to the pre-request callback
CURLOPT_PREREQFUNCTION user callback called when a connection has been
CURLOPT_PRIVATE store a private pointer
CURLOPT_PROGRESSDATA pointer passed to the progress callback
CURLOPT_PROGRESSFUNCTION progress meter callback
CURLOPT_PROTOCOLS_STR allowed protocols
CURLOPT_PROTOCOLS allowed protocols
CURLOPT_PROXY_CAINFO_BLOB proxy Certificate Authority (CA) bundle in

PEM format
CURLOPT_PROXY_CAINFO path to proxy Certificate Authority (CA)

bundle
CURLOPT_PROXY_CAPATH directory holding HTTPS proxy CA certificates
CURLOPT_PROXY_CRLFILE HTTPS proxy Certificate Revocation List file
CURLOPT_PROXY_ISSUERCERT_BLOB proxy issuer SSL certificate from memory blob
CURLOPT_PROXY_ISSUERCERT proxy issuer SSL certificate filename
CURLOPT_PROXY_KEYPASSWD passphrase for the proxy private key
CURLOPT_PROXY_PINNEDPUBLICKEY pinned public key for https proxy



336 ALL OPTIONS

Option Purpose
CURLOPT_PROXY_SERVICE_NAME proxy authentication service name
CURLOPT_PROXY_SSL_CIPHER_LIST ciphers to use for HTTPS proxy
CURLOPT_PROXY_SSL_OPTIONS HTTPS proxy SSL behavior options
CURLOPT_PROXY_SSL_VERIFYHOST verify the proxy certificate’s name against host
CURLOPT_PROXY_SSL_VERIFYPEER verify the proxy’s SSL certificate
CURLOPT_PROXY_SSLCERT_BLOB SSL proxy client certificate from memory blob
CURLOPT_PROXY_SSLCERT HTTPS proxy client certificate
CURLOPT_PROXY_SSLCERTTYPE type of the proxy client SSL certificate
CURLOPT_PROXY_SSLKEY_BLOB private key for proxy cert from memory blob
CURLOPT_PROXY_SSLKEY private keyfile for HTTPS proxy client cert
CURLOPT_PROXY_SSLKEYTYPE type of the proxy private key file
CURLOPT_PROXY_SSLVERSION preferred HTTPS proxy TLS version
CURLOPT_PROXY_TLS13_CIPHERS ciphers suites for proxy TLS 1.3
CURLOPT_PROXY_TLSAUTH_PASSWORD password to use for proxy TLS authentication
CURLOPT_PROXY_TLSAUTH_TYPE HTTPS proxy TLS authentication methods
CURLOPT_PROXY_TLSAUTH_USERNAME user name to use for proxy TLS authentication
CURLOPT_PROXY_TRANSFER_MODE append FTP transfer mode to URL for proxy
CURLOPT_PROXY proxy to use
CURLOPT_PROXYAUTH HTTP proxy authentication methods
CURLOPT_PROXYHEADER set of HTTP headers to pass to proxy
CURLOPT_PROXYPASSWORD password to use with proxy authentication
CURLOPT_PROXYPORT port number the proxy listens on
CURLOPT_PROXYTYPE proxy protocol type
CURLOPT_PROXYUSERNAME user name to use for proxy authentication
CURLOPT_PROXYUSERPWD user name and password to use for proxy

authentication
CURLOPT_PUT make an HTTP PUT request
CURLOPT_QUICK_EXIT allow to exit quickly
CURLOPT_QUOTE (S)FTP commands to run before transfer
CURLOPT_RANDOM_FILE file to read random data from
CURLOPT_RANGE byte range to request
CURLOPT_READDATA pointer passed to the read callback
CURLOPT_READFUNCTION read callback for data uploads
CURLOPT_REDIR_PROTOCOLS_STR protocols allowed to redirect to
CURLOPT_REDIR_PROTOCOLS protocols allowed to redirect to
CURLOPT_REFERER the HTTP referer header
CURLOPT_REQUEST_TARGET alternative target for this request
CURLOPT_RESOLVE provide custom hostname to IP address resolves
CURLOPT_RESOLVER_START_DATA pointer passed to the resolver start callback
CURLOPT_RESOLVER_START_FUNCTION callback called before a new name resolve is

started
CURLOPT_RESUME_FROM_LARGE offset to resume transfer from
CURLOPT_RESUME_FROM offset to resume transfer from
CURLOPT_RTSP_CLIENT_CSEQ RTSP client CSEQ number
CURLOPT_RTSP_REQUEST RTSP request
CURLOPT_RTSP_SERVER_CSEQ RTSP server CSEQ number
CURLOPT_RTSP_SESSION_ID RTSP session ID
CURLOPT_RTSP_STREAM_URI RTSP stream URI



337

Option Purpose
CURLOPT_RTSP_TRANSPORT RTSP Transport: header
CURLOPT_SASL_AUTHZID authorization identity (identity to act as)
CURLOPT_SASL_IR send initial response in first packet
CURLOPT_SEEKDATA pointer passed to the seek callback
CURLOPT_SEEKFUNCTION user callback for seeking in input stream
CURLOPT_SERVER_RESPONSE_TIMEOUT time in seconds allowed to wait for server

response
CURLOPT_SERVER_RESPONSE_TIMEOUT_MStime in milliseconds allowed to wait for server

response
CURLOPT_SERVICE_NAME authentication service name
CURLOPT_SHARE share handle to use
CURLOPT_SOCKOPTDATA pointer to pass to sockopt callback
CURLOPT_SOCKOPTFUNCTION callback for setting socket options
CURLOPT_SOCKS5_AUTH methods for SOCKS5 proxy authentication
CURLOPT_SOCKS5_GSSAPI_NEC socks proxy gssapi negotiation protection
CURLOPT_SOCKS5_GSSAPI_SERVICE SOCKS5 proxy authentication service name
CURLOPT_SSH_AUTH_TYPES auth types for SFTP and SCP
CURLOPT_SSH_COMPRESSION enable SSH compression
CURLOPT_SSH_HOST_PUBLIC_KEY_MD5 MD5 checksum of SSH server public key
CURLOPT_SSH_HOST_PUBLIC_KEY_SHA256SHA256 hash of SSH server public key
CURLOPT_SSH_HOSTKEYDATA pointer to pass to the SSH host key callback
CURLOPT_SSH_HOSTKEYFUNCTION callback to check host key
CURLOPT_SSH_KEYDATA pointer passed to the SSH key callback
CURLOPT_SSH_KEYFUNCTION callback for known host matching logic
CURLOPT_SSH_KNOWNHOSTS filename holding the SSH known hosts
CURLOPT_SSH_PRIVATE_KEYFILE private key file for SSH auth
CURLOPT_SSH_PUBLIC_KEYFILE public key file for SSH auth
CURLOPT_SSL_CIPHER_LIST ciphers to use for TLS
CURLOPT_SSL_CTX_DATA pointer passed to ssl_ctx callback
CURLOPT_SSL_CTX_FUNCTION SSL context callback for OpenSSL, wolfSSL or

mbedTLS
CURLOPT_SSL_EC_CURVES key exchange curves
CURLOPT_SSL_ENABLE_ALPN Application Layer Protocol Negotiation
CURLOPT_SSL_ENABLE_NPN use NPN
CURLOPT_SSL_FALSESTART TLS false start
CURLOPT_SSL_OPTIONS SSL behavior options
CURLOPT_SSL_SESSIONID_CACHE use the SSL session-ID cache
CURLOPT_SSL_VERIFYHOST verify the certificate’s name against host
CURLOPT_SSL_VERIFYPEER verify the peer’s SSL certificate
CURLOPT_SSL_VERIFYSTATUS verify the certificate’s status
CURLOPT_SSLCERT_BLOB SSL client certificate from memory blob
CURLOPT_SSLCERT SSL client certificate
CURLOPT_SSLCERTTYPE type of client SSL certificate
CURLOPT_SSLENGINE_DEFAULT make SSL engine default
CURLOPT_SSLENGINE SSL engine identifier
CURLOPT_SSLKEY_BLOB private key for client cert from memory blob
CURLOPT_SSLKEY private keyfile for TLS and SSL client cert
CURLOPT_SSLKEYTYPE type of the private key file



338 ALL OPTIONS

Option Purpose
CURLOPT_SSLVERSION preferred TLS/SSL version
CURLOPT_STDERR redirect stderr to another stream
CURLOPT_STREAM_DEPENDS_E stream this transfer depends on exclusively
CURLOPT_STREAM_DEPENDS stream this transfer depends on
CURLOPT_STREAM_WEIGHT numerical stream weight
CURLOPT_SUPPRESS_CONNECT_HEADERS suppress proxy CONNECT response headers

from user callbacks
CURLOPT_TCP_FASTOPEN TCP Fast Open
CURLOPT_TCP_KEEPALIVE TCP keep-alive probing
CURLOPT_TCP_KEEPIDLE TCP keep-alive idle time wait
CURLOPT_TCP_KEEPINTVL TCP keep-alive interval
CURLOPT_TCP_NODELAY the TCP_NODELAY option
CURLOPT_TELNETOPTIONS set of telnet options
CURLOPT_TFTP_BLKSIZE TFTP block size
CURLOPT_TFTP_NO_OPTIONS send no TFTP options requests
CURLOPT_TIMECONDITION select condition for a time request
CURLOPT_TIMEOUT_MS maximum time the transfer is allowed to

complete
CURLOPT_TIMEOUT maximum time the transfer is allowed to

complete
CURLOPT_TIMEVALUE_LARGE time value for conditional
CURLOPT_TIMEVALUE time value for conditional
CURLOPT_TLS13_CIPHERS ciphers suites to use for TLS 1.3
CURLOPT_TLSAUTH_PASSWORD password to use for TLS authentication
CURLOPT_TLSAUTH_TYPE TLS authentication methods
CURLOPT_TLSAUTH_USERNAME user name to use for TLS authentication
CURLOPT_TRAILERDATA pointer passed to trailing headers callback
CURLOPT_TRAILERFUNCTION callback for sending trailing headers
CURLOPT_TRANSFER_ENCODING ask for HTTP Transfer Encoding
CURLOPT_TRANSFERTEXT request a text based transfer for FTP
CURLOPT_UNIX_SOCKET_PATH Unix domain socket
CURLOPT_UNRESTRICTED_AUTH send credentials to other hosts too
CURLOPT_UPKEEP_INTERVAL_MS connection upkeep interval
CURLOPT_UPLOAD_BUFFERSIZE upload buffer size
CURLOPT_UPLOAD data upload
CURLOPT_URL URL for this transfer
CURLOPT_USE_SSL request using SSL / TLS for the transfer
CURLOPT_USERAGENT HTTP user-agent header
CURLOPT_USERNAME user name to use in authentication
CURLOPT_USERPWD user name and password to use in

authentication
CURLOPT_VERBOSE verbose mode
CURLOPT_WILDCARDMATCH directory wildcard transfers
CURLOPT_WRITEDATA pointer passed to the write callback
CURLOPT_WRITEFUNCTION callback for writing received data
CURLOPT_WS_OPTIONS WebSocket behavior options
CURLOPT_XFERINFODATA pointer passed to the progress callback
CURLOPT_XFERINFOFUNCTION progress meter callback



339

Option Purpose
CURLOPT_XOAUTH2_BEARER OAuth 2.0 access token



Get option information

libcurl offers an API, a set of functions really, that allow applications to get information
about all currently support easy options. It does not return the values for the options, but
it rather informs about name, ID and type of the option.

Iterate over all options
Modern libcurl supports over 300 different options. With the use of curl_easy_option_by_next()
an application can iterate over all the known options and return a pointer to a struct
curl_easyoption for them.

This function only returns information about options that this exact libcurl build knows
about. Other options may exist in newer libcurl builds, or in builds that enable/disable
options differently at build-time.

Example, iterate over all available options:

const struct curl_easyoption *opt;
opt = curl_easy_option_by_next(NULL);
while(opt) {

printf("Name: %s\n", opt->name);
opt = curl_easy_option_by_next(opt);

}

Find a specific option by name
Given a specific easy option name, you can ask libcurl to return a pointer to a struct
curl_easyoption for it. The name should be provided without the CURLOPT_ prefix.

As an example, an application can ask libcurl about the CURLOPT_VERBOSE option like
this:

const struct curl_easyoption *opt = curl_easy_option_by_name("VERBOSE");
if(opt) {

printf("This option wants CURLoption %x\n", (int)opt->id);
}

Find a specific option by ID
Given a specific easy option ID, you can ask libcurl to return a pointer to a struct
curl_easyoption for it. The “ID” is the CURLOPT_-prefixed symbol as provided in the

340



THE CURL_EASYOPTION STRUCT 341

public curl/curl.h header file.

An application can ask libcurl for the name of the CURLOPT_VERBOSE option like this:

const struct curl_easyoption *opt =
curl_easy_option_by_id(CURLOPT_VERBOSE);

if(opt) {
printf("This option has the name: %s\n", opt->name);

}

The curl_easyoption struct
struct curl_easyoption {

const char *name;
CURLoption id;
curl_easytype type;
unsigned int flags;

};

There is only one bit with a defined meaning in ‘flags’: if CURLOT_FLAG_ALIAS is set, it
means that that option is an “alias”. A name provided for backwards compatibility that
is nowadays rather served by an option with another name. If you lookup the ID for an
alias, you get the new canonical name for that option.



Drive transfers

libcurl provides three different ways to perform the transfer. Which way to use in your
case is entirely up to you and what you need.

1. The ‘easy’ interface lets you do a single transfer in a synchronous fashion. libcurl
does the entire transfer and return control back to your application when it is
completed—successful or failed.

2. The ‘multi’ interface is for when you want to do more than one transfer at the same
time, or you just want a non-blocking transfer.

3. The ‘multi_socket’ interface is a slight variation of the regular multi one, but is
event-based and is really the suggested API to use if you intend to scale up the
number of simultaneous transfers to hundreds or thousands or so.

Let’s look at each one a little closer. . .

• Drive with easy
• Drive with multi
• Drive with multi_socket

342



Drive with easy

The name ‘easy’ was picked simply because this is really the easy way to use libcurl, and
with easy, of course, comes a few limitations. Like, for example, that it can only do one
transfer at a time and that it does the entire transfer in a single function call and returns
once it is completed:

res = curl_easy_perform( easy_handle );

If the server is slow, if the transfer is large or if you have some unpleasant timeouts in
the network or similar, this function call can end up taking a long time. You can, of
course, set timeouts to not allow it to spend more than N seconds, but it could still mean
a substantial amount of time depending on the particular conditions.

If you want your application to do something else while libcurl is transferring with the
easy interface, you need to use multiple threads. If you want to do multiple simultaneous
transfers when using the easy interface, you need to perform each of the transfers in its
own thread.

343



Drive with multi

The name ‘multi’ is for multiple, as in multiple parallel transfers, all done in the same
single thread. The multi API is non-blocking so it can also make sense to use it for single
transfers.

The transfer is still set in an “easy” CURL * handle as described above, but with the
multi interface you also need a multi CURLM * handle created and use that to drive all the
individual transfers. The multi handle can “hold” one or many easy handles:

CURLM *multi_handle = curl_multi_init();

A multi handle can also get certain options set, which you do with curl_multi_setopt(),
but in the simplest case you might not have anything to set there.

To drive a multi interface transfer, you first need to add all the individual easy handles that
should be transferred to the multi handle. You can add them to the multi handle at any
point and you can remove them again whenever you like. Removing an easy handle from
a multi handle removes the association and that particular transfer stops immediately.

Adding an easy handle to the multi handle is easy:

curl_multi_add_handle( multi_handle, easy_handle );

Removing one is just as easily done:

curl_multi_remove_handle( multi_handle, easy_handle );

Having added the easy handles representing the transfers you want to perform, you write
the transfer loop. With the multi interface, you do the looping so you can ask libcurl for a
set of file descriptors and a timeout value and do the select() call yourself, or you can
use the slightly simplified version which does that for us, with curl_multi_wait. The
simplest loop could look like this: (note that a real application would check return codes)

int transfers_running;
do {

curl_multi_wait ( multi_handle, NULL, 0, 1000, NULL);
curl_multi_perform ( multi_handle, &transfers_running );

} while (transfers_running);

The fourth argument to curl_multi_wait, set to 1000 in the example above, is a timeout
in milliseconds. It is the longest time the function waits for any activity before it returns
anyway. You do not want to lock up for too long before calling curl_multi_perform
again as there are timeouts, progress callbacks and more that may lose precision if you do
so.

344



WHEN IS A SINGLE TRANSFER DONE? 345

To instead do select() on our own, we extract the file descriptors and timeout value from
libcurl like this (note that a real application would check return codes):

int transfers_running;
do {

fd_set fdread;
fd_set fdwrite;
fd_set fdexcep;
int maxfd = -1;
long timeout;

/* extract timeout value */
curl_multi_timeout(multi_handle, &timeout);
if (timeout < 0)

timeout = 1000;

/* convert to struct usable by select */
timeout.tv_sec = timeout / 1000;
timeout.tv_usec = (timeout % 1000) * 1000;

FD_ZERO(&fdread);
FD_ZERO(&fdwrite);
FD_ZERO(&fdexcep);

/* get file descriptors from the transfers */
mc = curl_multi_fdset(multi_handle, &fdread, &fdwrite,

&fdexcep, &maxfd);

if (maxfd == -1) {
SHORT_SLEEP;

}
else
select(maxfd+1, &fdread, &fdwrite, &fdexcep, &timeout);

/* timeout or readable/writable sockets */
curl_multi_perform(multi_handle, &transfers_running);

} while ( transfers_running );

Both these loops let you use one or more file descriptors of your own on which to wait,
like if you read from your own sockets or a pipe or similar.

And again, you can add and remove easy handles to the multi handle at any point during
the looping. Removing a handle mid-transfer aborts that transfer.

When is a single transfer done?
As the examples above show, a program can detect when an individual transfer completes
by seeing that the transfers_running variable decreases.

It can also call curl_multi_info_read(), which returns a pointer to a struct (a “message”)
if a transfer has ended and you can then find out the result of that transfer using that



346 DRIVE WITH MULTI

struct.

When you do multiple parallel transfers, more than one transfer can of course complete in
the same curl_multi_perform invocation and then you might need more than one call
to curl_multi_info_read to get info about each completed transfer.



Drive with multi_socket

multi_socket is the extra spicy version of the regular multi interface and is designed for
event-driven applications. Make sure you read the Drive with multi interface section first.

multi_socket supports multiple parallel transfers—all done in the same single thread—and
have been used to run several tens of thousands of transfers in a single application. It
is usually the API that makes the most sense if you do a large number (>100 or so) of
parallel transfers.

Event-driven in this case means that your application uses a system level library or setup
that subscribes to a number of sockets and it lets your application know when one of those
sockets are readable or writable and it tells you exactly which one.

This setup allows clients to scale up the number of simultaneous transfers much higher
than with other systems, and still maintain good performance. The regular APIs otherwise
waste far too much time scanning through lists of all the sockets.

Pick one
There are numerous event based systems to select from out there, and libcurl is completely
agnostic to which one you use. libevent, libev and libuv are three popular ones but you
can also go directly to your operating system’s native solutions such as epoll, kqueue,
/dev/poll, pollset or Event Completion.

Many easy handles
Just like with the regular multi interface, you add easy handles to a multi handle with
curl_multi_add_handle(). One easy handle for each transfer you want to perform.

You can add them at any time while the transfers are running and you can also similarly
remove easy handles at any time using the curl_multi_remove_handle call. Typically
though, you remove a handle only after its transfer is completed.

multi_socket callbacks
As explained above, this event-based mechanism relies on the application to know which
sockets that are used by libcurl and what activities libcurl waits for on those sockets: if it
waits for the socket to become readable, writable or both.

The application also needs to tell libcurl when the timeout time has expired, as it is control
of driving everything libcurl cannot do it itself. libcurl informs the application updated

347



348 DRIVE WITH MULTI_SOCKET

timeout values as soon as it needs to.

socket_callback
libcurl informs the application about socket activity to wait for with a callback called
CURLMOPT_SOCKETFUNCTION. Your application needs to implement such a func-
tion:

int socket_callback(CURL *easy, /* easy handle */
curl_socket_t s, /* socket */
int what, /* what to wait for */
void *userp, /* private callback pointer */
void *socketp) /* private socket pointer */

{
/* told about the socket ’s’ */

}

/* set the callback in the multi handle */
curl_multi_setopt(multi_handle, CURLMOPT_SOCKETFUNCTION, socket_callback);

Using this, libcurl sets and removes sockets your application should monitor. Your
application tells the underlying event-based system to wait for the sockets. This callback
is called multiple times if there are multiple sockets to wait for, and it is called again when
the status changes and perhaps you should switch from waiting for a writable socket to
instead wait for it to become readable.

When one of the sockets that the application is monitoring on libcurl’s behalf registers
that it becomes readable or writable, as requested, you tell libcurl about it by call-
ing curl_multi_socket_action() and passing in the affected socket and an associated
bitmask specifying which socket activity that was registered:

int running_handles;
ret = curl_multi_socket_action(multi_handle,

sockfd, /* the socket with activity */
ev_bitmask, /* the specific activity */
&running_handles);

timer_callback
The application is in control and waits for socket activity. But even without socket
activity there are things libcurl needs to do. Timeout things, calling the progress callback,
starting over a retry or failing a transfer that takes too long, etc. To make that work, the
application must also make sure to handle a single-shot timeout that libcurl sets.

libcurl sets the timeout with the timer_callback CURLMOPT_TIMERFUNCTION:

int timer_callback(multi_handle, /* multi handle */
timeout_ms, /* milliseconds to wait */
userp) /* private callback pointer */

{
/* the new time-out value to wait for is in ’timeout_ms’ */

}

https://curl.se/libcurl/c/CURLMOPT_SOCKETFUNCTION.html
https://curl.se/libcurl/c/CURLMOPT_TIMERFUNCTION.html


MULTI_SOCKET CALLBACKS 349

/* set the callback in the multi handle */
curl_multi_setopt(multi_handle, CURLMOPT_TIMERFUNCTION, timer_callback);

There is only one timeout for the application to handle for the entire multi handle, no
matter how many individual easy handles that have been added or transfers that are in
progress. The timer callback gets updated with the current nearest-in-time period to wait.
If libcurl gets called before the timeout expiry time because of socket activity, it may
update the timeout value again before it expires.

When the event system of your choice eventually tells you that the timer has expired, you
need to tell libcurl about it:

curl_multi_socket_action(multi, CURL_SOCKET_TIMEOUT, 0, &running);

. . . in many cases, this makes libcurl call the timer_callback again and set a new timeout
for the next expiry period.

How to start everything
When you have added one or more easy handles to the multi handle and set the socket
and timer callbacks in the multi handle, you are ready to start the transfer.

To kick it all off, you tell libcurl it timed out (because all easy handles start out with a
short timeout) which make libcurl call the callbacks to set things up and from then on
you can just let your event system drive:

/* all easy handles and callbacks are setup */

curl_multi_socket_action(multi, CURL_SOCKET_TIMEOUT, 0, &running);

/* now the callbacks should have been called and we have sockets to wait
for and possibly a timeout, too. Make the event system do its magic */

event_base_dispatch(event_base); /* libevent2 has this API */

/* at this point we have exited the event loop */

When is it done?
The ‘running_handles’ counter returned by curl_multi_socket_action holds the number
of current transfers not completed. When that number reaches zero, we know there are no
transfers going on.

Each time the ‘running_handles’ counter changes, curl_multi_info_read() returns info
about the specific transfers that completed.



Callbacks

Lots of operations within libcurl are controlled with the use of callbacks. A callback is a
function pointer provided to libcurl that libcurl then calls at some point to get a particular
job done.

Each callback has its specific documented purpose and it requires that you write it with
the exact function prototype to accept the correct arguments and return the documented
return code and return value so that libcurl performs the way you want it to.

Each callback option also has a companion option that sets the associated user pointer.
This user pointer is a pointer that libcurl does not touch or care about, but just passes on
as an argument to the callback. This allows you to, for example, pass in pointers to local
data all the way through to your callback function.

Unless explicitly stated in a libcurl function documentation, it is not legal to invoke libcurl
functions from within a libcurl callback.

• Write data
• Read data
• Progress information
• Header data
• Debug
• sockopt
• SSL context
• Seek and ioctl
• Network data conversion
• Opensocket and closesocket
• SSH key
• RTSP interleaved data
• FTP wildcard matching
• Resolver start
• Sending trailers
• HSTS
• Prereq

350



Write data

The write callback is set with CURLOPT_WRITEFUNCTION:

curl_easy_setopt(handle, CURLOPT_WRITEFUNCTION, write_callback);

The write_callback function must match this prototype:

size_t write_callback(char *ptr, size_t size, size_t nmemb,
void *userdata);

This callback function gets called by libcurl as soon as there is data received that needs to
be saved. ptr points to the delivered data, and the size of that data is size multiplied with
nmemb.

If this callback is not set, libcurl instead uses ‘fwrite’ by default.

The write callback is passed as much data as possible in all invokes, but it must not
make any assumptions. It may be one byte, it may be thousands. The maximum amount
of body data that is passed to the write callback is defined in the curl.h header file:
CURL_MAX_WRITE_SIZE (the usual default is 16KB). If CURLOPT_HEADER is enabled for this
transfer, which makes header data get passed to the write callback, you can get up to
CURL_MAX_HTTP_HEADER bytes of header data passed into it. This usually means 100KB.

This function may be called with zero bytes data if the transferred file is empty.

The data passed to this function is not be zero terminated. You cannot, for example, use
printf’s %s operator to display the contents nor strcpy to copy it.

This callback should return the number of bytes actually taken care of. If that number
differs from the number passed to your callback function, it signals an error condition to
the library. This causes the transfer to get aborted and the libcurl function used returns
CURLE_WRITE_ERROR.

The user pointer passed in to the callback in the userdata argument is set with
CURLOPT_WRITEDATA:

curl_easy_setopt(handle, CURLOPT_WRITEDATA, custom_pointer);

Store in memory
A popular demand is to store the retrieved response in memory, and the callback explained
above supports that. When doing this, just be careful as the response can potentially be
enormous.

You implement the callback in a manner similar to:

351



352 WRITE DATA

struct response {
char *memory;
size_t size;

};

static size_t
mem_cb(void *contents, size_t size, size_t nmemb, void *userp)
{

size_t realsize = size * nmemb;
struct response *mem = (struct response *)userp;

char *ptr = realloc(mem->memory, mem->size + realsize + 1);
if(!ptr) {

/* out of memory! */
printf("not enough memory (realloc returned NULL)\n");
return 0;

}

mem->memory = ptr;
memcpy(&(mem->memory[mem->size]), contents, realsize);
mem->size += realsize;
mem->memory[mem->size] = 0;

return realsize;
}

int main()
{

struct response chunk = {.memory = malloc(0),
.size = 0};

/* send all data to this function */
curl_easy_setopt(curl_handle, CURLOPT_WRITEFUNCTION, mem_cb);

/* we pass our ’chunk’ to the callback function */
curl_easy_setopt(curl_handle, CURLOPT_WRITEDATA, (void *)&chunk);

free(chunk.memory);
}



Read data

The read callback is set with CURLOPT_READFUNCTION:

curl_easy_setopt(handle, CURLOPT_READFUNCTION, read_callback);

The read_callback function must match this prototype:

size_t read_callback(char *buffer, size_t size, size_t nitems,
void *stream);

This callback function gets called by libcurl when it wants to send data to the server. This
is a transfer that you have set up to upload data or otherwise send it off to the server.
This callback is called over and over until all data has been delivered or the transfer failed.

The stream pointer points to the private data set with CURLOPT_READDATA:

curl_easy_setopt(handle, CURLOPT_READDATA, custom_pointer);

If this callback is not set, libcurl instead uses ‘fread’ by default.

The data area pointed at by the pointer buffer should be filled up with at most size
multiplied with nitems number of bytes by your function. The callback should then
return the number of bytes that it stored in that memory area, or 0 if we have reached
the end of the data. The callback can also return a few “magic” return codes to cause
libcurl to return failure immediately or to pause the particular transfer. See the CUR-
LOPT_READFUNCTION man page for details.

353

https://curl.se/libcurl/c/CURLOPT_READFUNCTION.html
https://curl.se/libcurl/c/CURLOPT_READFUNCTION.html


Progress information

The progress callback is what gets called regularly and repeatedly for each trans-
fer during the entire lifetime of the transfer. The old callback was set with
CURLOPT_PROGRESSFUNCTION but the modern and preferred callback is set with
CURLOPT_XFERINFOFUNCTION:

curl_easy_setopt(handle, CURLOPT_XFERINFOFUNCTION, xfer_callback);

The xfer_callback function must match this prototype:

int xfer_callback(void *clientp, curl_off_t dltotal, curl_off_t dlnow,
curl_off_t ultotal, curl_off_t ulnow);

If this option is set and CURLOPT_NOPROGRESS is set to 0 (zero), this callback function gets
called by libcurl with a frequent interval. While data is being transferred it gets called
frequently, and during slow periods like when nothing is being transferred it can slow down
to about one call per second.

The clientp pointer points to the private data set with CURLOPT_XFERINFODATA:

curl_easy_setopt(handle, CURLOPT_XFERINFODATA, custom_pointer);

The callback gets told how much data libcurl is about to transfer and has transferred, in
number of bytes:

• dltotal is the total number of bytes libcurl expects to download in this transfer.
• dlnow is the number of bytes downloaded so far.
• ultotal is the total number of bytes libcurl expects to upload in this transfer.
• ulnow is the number of bytes uploaded so far.

Unknown/unused argument values passed to the callback are set to zero (like if you only
download data, the upload size remains zero). Many times the callback is called one or
more times first, before it knows the data sizes, so a program must be made to handle
that.

Returning a non-zero value from this callback causes libcurl to abort the transfer and
return CURLE_ABORTED_BY_CALLBACK.

If you transfer data with the multi interface, this function is not called during periods of
idleness unless you call the appropriate libcurl function that performs transfers.

(The deprecated callback CURLOPT_PROGRESSFUNCTION worked identically but instead of
taking arguments of type curl_off_t, it used double.)

354



Header data

The header callback is set with CURLOPT_HEADERFUNCTION:

curl_easy_setopt(handle, CURLOPT_HEADERFUNCTION, header_callback);

The header_callback function must match this prototype:

size_t header_callback(char *ptr, size_t size, size_t nmemb,
void *userdata);

This callback function gets called by libcurl as soon as a header has been received. ptr
points to the delivered data, and the size of that data is size multiplied with nmemb.
libcurl buffers headers and delivers only “full” headers, one by one, to this callback.

The data passed to this function is not be zero terminated. You cannot, for example, use
printf’s %s operator to display the contents nor strcpy to copy it.

This callback should return the number of bytes actually taken care of. If that number
differs from the number passed to your callback function, it signals an error condition
to the library. This causes the transfer to abort and the libcurl function used returns
CURLE_WRITE_ERROR.

The user pointer passed in to the callback in the userdata argument is set with
CURLOPT_HEADERDATA:

curl_easy_setopt(handle, CURLOPT_HEADERDATA, custom_pointer);

355



Debug

The debug callback is set with CURLOPT_DEBUGFUNCTION:

curl_easy_setopt(handle, CURLOPT_DEBUGFUNCTION, debug_callback);

The debug_callback function must match this prototype:

int debug_callback(CURL *handle,
curl_infotype type,
char *data,
size_t size,
void *userdata);

This callback function replaces the default verbose output function in the library and gets
called for all debug and trace messages to aid applications to understand what’s going on.
The type argument explains what sort of data that is provided: header, data or SSL data
and in which direction it flows.

A common use for this callback is to get a full trace of all data that libcurl sends and
receives. The data sent to this callback is always the unencrypted version, even when, for
example, HTTPS or other encrypted protocols are used.

This callback must return zero or cause the transfer to stop with an error code.

The user pointer passed in to the callback in the userdata argument is set with
CURLOPT_DEBUGDATA:

curl_easy_setopt(handle, CURLOPT_DEBUGDATA, custom_pointer);

356



sockopt

The sockopt callback is set with CURLOPT_SOCKOPTFUNCTION:

curl_easy_setopt(handle, CURLOPT_SOCKOPTFUNCTION, sockopt_callback);

The sockopt_callback function must match this prototype:

int sockopt_callback(void *clientp,
curl_socket_t curlfd,
curlsocktype purpose);

This callback function gets called by libcurl when a new socket has been created but before
the connect call, to allow applications to change specific socket options.

The clientp pointer points to the private data set with CURLOPT_SOCKOPTDATA:

curl_easy_setopt(handle, CURLOPT_SOCKOPTDATA, custom_pointer);

This callback should return:

• CURL_SOCKOPT_OK on success
• CURL_SOCKOPT_ERROR to signal an unrecoverable error to libcurl
• CURL_SOCKOPT_ALREADY_CONNECTED to signal success but also that the

socket is in fact already connected to the destination

357



SSL context

libcurl offers a special TLS related callback called CURLOPT_SSL_CTX_FUNCTION. This
option only works for libcurl powered by OpenSSL, wolfSSL or mbedTLS and it does
nothing if libcurl is built with another TLS backend.

This callback gets called by libcurl just before the initialization of a TLS connection after
having processed all other TLS related options to give a last chance to an application
to modify the behavior of the TLS initialization. The ssl_ctx parameter passed to
the callback in the second argument is actually a pointer to the SSL library’s SSL_CTX
for OpenSSL or wolfSSL, and a pointer to mbedtls_ssl_config for mbedTLS. If an
error is returned from the callback no attempt to establish a connection is made and
the operation returns the callback’s error code. Set the userptr argument with the
CURLOPT_SSL_CTX_DATA option.

This function gets called on all new connections made to a server, during the TLS
negotiation. The TLS context points to a newly initialized object each time.

358



Seek and ioctl

This callback is set with CURLOPT_SEEKFUNCTION.

The callback gets called by libcurl to seek to a certain position in the input stream and
can be used to fast forward a file in a resumed upload (instead of reading all uploaded
bytes with the normal read function/callback). It is also called to rewind a stream when
data has already been sent to the server and needs to be sent again. This may happen
when doing an HTTP PUT or POST with a multi-pass authentication method, or when
an existing HTTP connection is reused too late and the server closes the connection. The
function shall work like fseek(3) or lseek(3) and it gets SEEK_SET, SEEK_CUR or SEEK_END
as argument for origin, although libcurl currently only passes SEEK_SET.

The custom userp sent to the callback is the pointer you set with CURLOPT_SEEKDATA.

The callback function must return CURL_SEEKFUNC_OK on success, CURL_SEEKFUNC_FAIL
to cause the upload operation to fail or CURL_SEEKFUNC_CANTSEEK to indicate that while
the seek failed, libcurl is free to work around the problem if possible. The latter can
sometimes be done by instead reading from the input or similar.

If you forward the input arguments directly to fseek(3) or lseek(3), note that the data
type for offset is not the same as defined for curl_off_t on many systems.

359



Network data conversion

Up until libcurl version 7.82.0, these callbacks were provided to make things work on
non-ASCII platforms. The support for these callbacks have since been removed.

The documentation below is kept here for a while and describes how they used to work. It
will be removed from this book at a future date.

Convert to and from network callbacks
For non-ASCII platforms, CURLOPT_CONV_FROM_NETWORK_FUNCTION is provided. This
function should convert to host encoding from the network encoding.

CURLOPT_CONV_TO_NETWORK_FUNCTION should convert from host encoding to the network
encoding. It is used when commands or ASCII data are sent over the network.

Convert from UTF-8 callback
CURLOPT_CONV_FROM_UTF8_FUNCTION should convert to host encoding from UTF-8 encod-
ing. It is required only for SSL processing.

360



Opensocket and closesocket

Occasionally you end up in a situation where you want your application to control with
more precision exactly what socket libcurl uses for its operations. libcurl offers this pair of
callbacks that replaces libcurl’s own call to socket() and the subsequent close() of the
same file descriptor.

Provide a file descriptor
By setting the CURLOPT_OPENSOCKETFUNCTION callback, you can provide a custom function
to return a file descriptor for libcurl to use:

curl_easy_setopt(handle, CURLOPT_OPENSOCKETFUNCTION, opensocket_callback);

The opensocket_callback function must match this prototype:

curl_socket_t opensocket_callback(void *clientp,
curlsocktype purpose,
struct curl_sockaddr *address);

The callback gets the clientp as first argument, which is simply an opaque pointer you set
with CURLOPT_OPENSOCKETDATA.

The other two arguments pass in data that identifies for what purpose and address the
socket is to be used. The purpose is a typedef with a value of CURLSOCKTYPE_IPCXN
or CURLSOCKTYPE_ACCEPT, identifying in which circumstance the socket is created. The
“accept” case being when libcurl is used to accept an incoming FTP connection for when
FTP active mode is used, and all other cases when libcurl creates a socket for its own
outgoing connections the IPCXN value is passed in.

The address pointer points to a struct curl_sockaddr that describes the IP address of
the network destination for which this socket is created. Your callback can for example
use this information to whitelist or blacklist specific addresses or address ranges.

The socketopen callback is also explicitly allowed to modify the target address in that
struct, if you would like to offer some sort of network filter or translation layer.

The callback should return a file descriptor or CURL_SOCKET_BAD, which then causes an
unrecoverable error within libcurl and it returns CURLE_COULDNT_CONNECT from its perform
function.

If you want to return a file descriptor that is already connected to a server, then you must
also set the sockopt callback and make sure that returns the correct return value.

The curl_sockaddress struct looks like this:

361



362 OPENSOCKET AND CLOSESOCKET

struct curl_sockaddr {
int family;
int socktype;
int protocol;
unsigned int addrlen;
struct sockaddr addr;

};

Socket close callback
The corresponding callback to the open socket is of course the close socket. Usually when
you provide a custom way to provide a file descriptor you want to provide your own cleanup
version as well:

curl_easy_setopt(handle, CURLOPT_CLOSESOCKETFUNCTION,
closesocket_callback);

The closesocket_callback function must match this prototype:

int closesocket_callback(void *clientp, curl_socket_t item);



SSH key

This callback is set with CURLOPT_SSH_KEYFUNCTION.

It gets called when the known_host matching has been done, to allow the application to act
and decide for libcurl how to proceed. The callback is called if CURLOPT_SSH_KNOWNHOSTS
is also set.

In the arguments to the callback are the old key and the new key and the callback is
expected to return a return code that tells libcurl how to act:

CURLKHSTAT_FINE_REPLACE - The new host+key is accepted and libcurl replaces the old
host+key into the known_hosts file before continuing with the connection. This also adds
the new host+key combo to the known_host pool kept in memory if it was not already
present there. The adding of data to the file is done by completely replacing the file with
a new copy, so the permissions of the file must allow this.

CURLKHSTAT_FINE_ADD_TO_FILE - The host+key is accepted and libcurl appends it to the
known_hosts file before continuing with the connection. This also adds the host+key
combo to the known_host pool kept in memory if it was not already present there. The
adding of data to the file is done by completely replacing the file with a new copy, so the
permissions of the file must allow this.

CURLKHSTAT_FINE - The host+key is accepted libcurl continues with the connection. This
also adds the host+key combo to the known_host pool kept in memory if it was not
already present there.

CURLKHSTAT_REJECT - The host+key is rejected. libcurl denies the connection to continue
and it closes.

CURLKHSTAT_DEFER - The host+key is rejected, but the SSH connection is asked to be
kept alive. This feature could be used when the app wants to somehow return and act on
the host+key situation and then retry without needing the overhead of setting it up from
scratch again.

363



RTSP interleaved data

The callback with the CURLOPT_INTERLEAVEFUNCTION option.

This callback gets called by libcurl as soon as it has received interleaved RTP data when
doing an RTSP transfer. It gets called for each $ block and therefore contains exactly one
upper-layer protocol unit (e.g. one RTP packet). libcurl writes the interleaved header as
well as the included data for each call. The first byte is always an ASCII dollar sign. The
dollar sign is followed by a one byte channel identifier and then a 2 byte integer length
in network byte order. See RFC2326 Section 10.12 for more information on how RTP
interleaving behaves. If unset or set to NULL, curl uses the default write function.

The CURLOPT_INTERLEAVEDATA pointer is passed in the userdata argument in the callback.

364



FTP wildcard matching

libcurl supports FTP wildcard matching. You use this feature by setting CURLOPT_WILDCARDMATCH
to 1L and then use a “wildcard pattern” in the in the filename part of the URL.

Wildcard patterns
The default libcurl wildcard matching function supports:

* - ASTERISK

ftp://example.com/some/path/*.txt

To match all txt files in the directory some/path. Only two asterisks are allowed within
the same pattern string.

? - QUESTION MARK"

A question mark matches any (exactly one) character. Like if you have files called
photo1.jpeg and photo7.jpeg this pattern could match them:

ftp://example.com/some/path/photo?.jpeg

[ - BRACKET EXPRESSION

The left bracket opens a bracket expression. The question mark and asterisk have no
special meaning in a bracket expression. Each bracket expression ends by the right bracket
(]) and matches exactly one character. Some examples follow:

[a-zA-Z0-9] or [f-gF-G] - character intervals

[abc] - character enumeration

[ˆabc] or [!abc] - negation

[[:name:]] class expression. Supported classes are alnum, lower, space, alpha, digit,
print, upper, blank, graph, xdigit.

[][-!ˆ] - special case, matches only \-, ], [, ! or ˆ.

[\\[\\]\\\\] - escape syntax. Matches [, ] or \\.

Using the rules above, a filename pattern can be constructed:

ftp://example.com/some/path/[a-z[:upper:]\\\\].jpeg

365



366 FTP WILDCARD MATCHING

FTP chunk callbacks
When FTP wildcard matching is used, the CURLOPT_CHUNK_BGN_FUNCTION callback is
called before a transfer is initiated for a file that matches.

The callback can then opt to return one of these return codes to tell libcurl what to do
with the file:

• CURL_CHUNK_BGN_FUNC_OK transfer the file
• CURL_CHUNK_BGN_FUNC_SKIP
• CURL_CHUNK_BGN_FUNC_FAIL stop because of error

After the matched file has been transferred or skipped, the CURLOPT_CHUNK_END_FUNCTION
callback is called.

The end chunk callback can only return success or error.

FTP matching callback
If the default pattern matching function is not to your liking, you can provide your
own replacement function by setting the CURLOPT_FNMATCH_FUNCTION option to your
alternative.



Resolver start

This callback function, set with CURLOPT_RESOLVER_START_FUNCTION gets called by libcurl
every time before a new resolve request is started, and it specifies for which CURL * handle
the resolve is intended.

367



Sending trailers

“Trailers” is an HTTP/1 feature where headers can be passed on at the end of a transfer.
This callback is used for when you want to send trailers with curl after an upload has been
performed. An upload in the form of a chunked encoded POST.

The callback set with CURLOPT_TRAILERFUNCTION is called and the function can then
append headers to a list. One or many. When done, libcurl sends off those as trailers to
the server.

368



HSTS

For HSTS, HTTP Strict Transport Security, libcurl provides two callbacks to allow an
allocation to implement the storage for rules. The callbacks are then set to read and/or
write the HSTS policies from a persistent storage.

With CURLOPT_HSTSREADFUNCTION, the application provides a function using which HSTS
data into libcurl is read. CURLOPT_HSTSWRITEFUNCTION is the corresponding function that
libcurl calls to write data.

369



Prereq

“Prereq” here means immediately before the request is issued. That is the moment where
this callback is called.

Set the function with CURLOPT_PREREQFUNCTION and it gets called and passed on the used
IP address and port numbers in the arguments. This allows the application to know about
the transfer just before it starts and also allows it to cancel this particular transfer should
it want to.

370



Connection control

When doing a transfer with libcurl there is typically a connection involved. A connection
done using an Internet transport protocol like TCP or QUIC. Transfers are done over
connections and libcurl offers a lot of concepts for connections and options to control how
it works with them.

• How libcurl connects
• Connection reuse
• Name resolving
• Proxies

371



How libcurl connects

When libcurl is about to do an Internet transfer, it first resolves the host name to get a
number of IP addresses for the host. A hostname needs to have at least one address for
libcurl to be able to connect to it.

A hostname can have both IPv4 addresses and IPv6 addresses and they can have a set of
both.

If the host only returned addresses of a single IP family, libcurl iterates over each address
and tries to connect. If the connect attempt fails for an IP, libcurl continues to try the
next entry until the entire list is exhausted.

An application can limit which IP versions libcurl uses by setting CURLOPT_IPRESOLVE.

Happy Eyeballs
When it has received both IPv4 and IPv6 addresses for a host, libcurl first tries to connect
to an IPv6 address and after a short delay it tries connecting to the first IPv4 address
- at the same time and in parallel. Once one of the attempts succeeds, the others are
discarded. This method of attempting to connect using both families at the same time is
called Happy Eyeballs and is the widely accepted best practice for Internet clients.

An application can set the delay with which the second family connect attempt starts in
the Happy Eyeball procedure by using CURLOPT_HAPPY_EYEBALLS_TIMEOUT_MS.

Timeout and halving
The connection phase has a maximum allowed time (set with CURLOPT_CONNECTTIMEOUT_MS),
which defaults to 300 seconds. The entire connect procedure is deemed failed if no connect
has succeeded within that time.

When libcurl has multiple addresses left to try to connect to, and there is more than 600
millisecond left, it will at most allow half the remaining time for this attempt. This is to
avoid a single sink-hole address make libcurl spend its entire timeout on that bad entry.

For example: if there are 1000 milliseconds left of the timeout and there are two IP
addresses left to try to connect to, libcurl then only allows 500 milliseconds on the next
attempt.

If there instead only are 600 milliseconds left of the timeout and there are two IP addresses
left to try to connect to, libcurl allows the entire remaining timeout period on the next

372



HTTP/3 373

attempt, in order to not make it too short to succeed. The timeout halving approach is
only done as long as there is more than 600 milliseconds remaining.

HTTP/3
For applications that ask libcurl to use HTTP/3, it adds another layer of Happy Eyeballs.
HTTP/3 works over QUIC and QUIC is a different transport protocol than TCP and a
mechanism that sometimes is blocked or otherwise does not work as well as TCP. In an
effort to smooth out the problems this brings, libcurl performs QUIC connects in parallel
with regular TCP connects in addition to the different IP version connects described above.

When libcurl get both IPv4 and IPv6 addresses for a host, and it wants to do HTTP/3
with the host, it proceeds like this:

1. Start an IPv6 QUIC connect attempt, iterate over the IPv6 addresses
2. After a short delay, start an IPv4 QUIC connect attempt, iterate over the IPv4

addresses
3. After a short delay, start an IPv6 TCP connect attempt, iterate over the IPv6

addresses
4. After a short delay, start an IPv4 TCP connect attempt, iterate over the IPv4

addresses

Once a connect attempt is successful, all the other ones are immediately discarded.

The HTTP/3 happy eyeballing is done when libcurl is asked to use CURL_HTTP_VERSION_3
but not if set to CURL_HTTP_VERSION_3ONLY.



Connection reuse

libcurl keeps a pool of old connections alive. When one transfer has completed it keeps N
connections alive in a connection pool (sometimes also called connection cache) so that a
subsequent transfer that happens to be able to reuse one of the existing connections can
use it instead of creating a new one. Reusing a connection instead of creating a new one
offers significant benefits in speed and required resources.

When libcurl is about to make a new connection for the purposes of doing a transfer, it
first checks to see if there is an existing connection in the pool that it can reuse instead.
The connection re-use check is done before any DNS or other name resolving mechanism
is used, so it is purely host name based. If there is an existing live connection to the right
hostname, a lot of other properties (port number, protocol, etc) are also checked to see
that it can be used.

Easy API pool
When you are using the easy API, or, more specifically, curl_easy_perform(), libcurl
keeps the pool associated with the specific easy handle. Then reusing the same easy handle
ensures libcurl can reuse its connection.

Multi API pool
When you are using the multi API, the connection pool is instead kept associated with
the multi handle. This allows you to cleanup and re-create easy handles freely without
risking losing the connection pool, and it allows the connection used by one easy handle
to get reused by a separate one in a later transfer. Just reuse the multi handle.

Sharing the connection cache
Since libcurl 7.57.0, applications can use the share interface to have otherwise independent
transfers share the same connection pool.

374



Name resolving

Most transfers libcurl can do involves a name that first needs to be translated to an
Internet address. That is name resolving. Using a numerical IP address directly in the
URL usually avoids the name resolve phase, but in many cases it is not easy to manually
replace the name with the IP address.

libcurl tries hard to re-use an existing connection rather than to create a new one. The
function that checks for an existing connection to use is based purely on the name and is
performed before any name resolving is attempted. That is one of the reasons the re-use is
so much faster. A transfer using a reused connection does not resolve the hostname again.

If no connection can be reused, libcurl resolves the hostname to the set of addresses it
resolves to. Typically this means asking for both IPv4 and IPv6 addresses and there may
be a whole set of those returned to libcurl. That set of addresses is then tried until one
works, or it returns failure.

An application can force libcurl to use only an IPv4 or IPv6 resolved address by setting
CURLOPT_IPRESOLVE to the preferred value. For example, ask to only use IPv6 addresses:

curl_easy_setopt(easy, CURLOPT_IPRESOLVE, CURL_IPRESOLVE_V6);

Name resolver backends
libcurl can be built to do name resolves in one out of these three different ways and
depending on which backend way that is used, it gets a slightly different feature set and
sometimes modified behavior.

1. The default backend is invoking the normal libc resolver functions in a new helper-
thread, so that it can still do fine-grained timeouts if wanted and there is no blocking
calls involved.

2. On older systems, libcurl uses the standard synchronous name resolver functions.
They unfortunately make all transfers within a multi handle block during its operation
and it is much harder to time out nicely.

3. There is also support for resolving with the c-ares third party library, which supports
asynchronous name resolving without the use of threads. This scales better to huge
number of parallel transfers but it is not always 100% compatible with the native
name resolver functionality.

375



376 NAME RESOLVING

DNS over HTTPS
Independently of what resolver backend that libcurl is built to use, since 7.62.0 it also
provides a way for the user to ask a specific DoH (DNS over HTTPS) server for the address
of a name. This avoids using the normal, native resolver method and server and instead
asks a dedicated separate one.

A DoH server is specified as a full URL with the CURLOPT_DOH_URL option like this:

curl_easy_setopt(easy, CURLOPT_DOH_URL, "https://example.com/doh");

The URL passed to this option must be using https:// and it is generally recommended
that you have HTTP/2 support enabled so that libcurl can perform multiple DoH requests
multiplexed over the connection to the DoH server.

Caching
When a name has been resolved, the result is stored in libcurl’s in-memory cache so that
subsequent resolves of the same name are instant for as long the name is kept in the DNS
cache. By default, each entry is kept in the cache for 60 seconds, but that value can be
changed with CURLOPT_DNS_CACHE_TIMEOUT.

The DNS cache is kept within the easy handle when curl_easy_perform is used, or within
the multi handle when the multi interface is used. It can also be made shared between
multiple easy handles using the share interface.

Custom addresses for hosts
Sometimes it is handy to provide fake, custom addresses for real host names so that libcurl
connects to a different address instead of one an actual name resolve would suggest.

With the help of the CURLOPT_RESOLVE option, an application can pre-populate
libcurl’s DNS cache with a custom address for a given hostname and port number.

To make libcurl connect to 127.0.0.1 when example.com on port 443 is requested, an
application can do:

struct curl_slist *dns;
dns = curl_slist_append(NULL, "example.com:443:127.0.0.1");
curl_easy_setopt(curl, CURLOPT_RESOLVE, dns);

Since this puts the fake address into the DNS cache, it works even when following redirects
etc.

Name server options
For libcurl built to use c-ares, there is a few options available that offer fine-grained control
of what DNS servers to use and how. This is limited to c-ares build purely because these
are powers that are not available when the standard system calls for name resolving are
used.

• With CURLOPT_DNS_SERVERS, the application can select to use a set of dedicated
DNS servers.

https://curl.se/libcurl/c/CURLOPT_RESOLVE.html


NO GLOBAL DNS CACHE 377

• With CURLOPT_DNS_INTERFACE it can tell libcurl which network interface to speak
DNS over instead of the default one.

• With CURLOPT_DNS_LOCAL_IP4 and CURLOPT_DNS_LOCAL_IP6, the application can
specify which specific network addresses to bind DNS resolves to.

No global DNS cache
The option called CURLOPT_DNS_USE_GLOBAL_CACHE once told curl to use a global DNS
cache. This functionality has been removed since 7.65.0, so while this option still exists it
does nothing.



Proxies

A proxy in a network context is a middle man, a server in between you as a client and the
remote server you want to communicate with. The client contacts the middle man which
then goes on to contact the remote server for you.

This style of proxy use is sometimes used by companies and organizations, in which case
you are usually required to use them to reach the target server.

There are several different kinds of proxies and different protocols to use when commu-
nicating with a proxy, and libcurl supports a few of the most common proxy protocols.
It is important to realize that the protocol used to the proxy is not necessarily the same
protocol used to the remote server.

When setting up a transfer with libcurl you need to point out the server name and port
number of the proxy. You may find that your favorite browsers can do this in slightly
more advanced ways than libcurl can, and we get into such details in later sections.

Proxy types
libcurl supports the two major proxy types: SOCKS and HTTP proxies. More specifically,
it supports both SOCKS4 and SOCKS5 with or without remote name lookup, as well as
both HTTP and HTTPS to the local proxy.

The easiest way to specify which kind of proxy you are talking to is to set the scheme part
of the proxy hostname string (CURLOPT_PROXY) to match it:

socks4://proxy.example.com:12345/
socks4a://proxy.example.com:12345/
socks5://proxy.example.com:12345/
socks5h://proxy.example.com:12345/
http://proxy.example.com:12345/
https://proxy.example.com:12345/

socks4 - means SOCKS4 with local name resolving

socks4a - means SOCKS4 with proxy’s name resolving

socks5 - means SOCKS5 with local name resolving

socks5h - means SOCKS5 with proxy’s name resolving

http - means HTTP, which always lets the proxy resolve names

https - means HTTPS to the proxy, which always lets the proxy resolve names.

378



LOCAL OR PROXY NAME LOOKUP 379

You can also opt to set the type of the proxy with a separate option if you prefer to
only set the hostname, using CURLOPT_PROXYTYPE. Similarly, you can set the proxy port
number to use with CURLOPT_PROXYPORT.

Local or proxy name lookup
In a section above you can see that different proxy setups allow the name resolving to be
done by different parties involved in the transfer. You can in several cases either have the
client resolve the server hostname and pass on the IP address to the proxy to connect to -
which of course assumes that the name lookup works accurately on the client system - or
you can hand over the name to the proxy to have the proxy resolve the name; converting
it to an IP address to connect to.

When you are using an HTTP or HTTPS proxy, you always give the name to the proxy
to resolve.

Which proxy?
If your network connection requires the use of a proxy to reach the destination, you must
figure this out and tell libcurl to use the correct proxy. There is no support in libcurl to
make it automatically figure out or detect a proxy.

When using a browser, it is popular to provide the proxy with a PAC script or other means
but none of those are recognized by libcurl.

Proxy environment variables
If no proxy option has been set, libcurl checks for the existence of specially named
environment variables before it performs its transfer to see if a proxy is requested to get
used.

You can specify the proxy by setting a variable named [scheme]_proxy to hold the proxy
hostname (the same way you would specify the host with -x). If you want to tell curl
to use a proxy when accessing an HTTP server, you set the http_proxy environment
variable. Like this:

http_proxy=http://proxy.example.com:80

The proxy example above is for HTTP, but can of course also set ftp_proxy, https_proxy,
and so on for the specific protocols you want to proxy. All these proxy environment variable
names except http_proxy can also be specified in uppercase, like HTTPS_PROXY.

To set a single variable that controls all protocols, the ALL_PROXY exists. If a specific
protocol variable one exists, such a one takes precedence.

When using environment variables to set a proxy, you could easily end up in a situation
where one or a few host names should be excluded from going through the proxy. This
can be done with the NO_PROXY variable - or the corresponding CURLOPT_NOPROXY libcurl
option. Set that to a comma-separated list of host names that should not use a proxy
when being accessed. You can set NO_PROXY to be a single asterisk (‘*’) to match all
hosts.



380 PROXIES

HTTP proxy
The HTTP protocol details exactly how an HTTP proxy should be used. Instead of sending
the request to the actual remote server, the client (libcurl) instead asks the proxy for the
specific resource. The connection to the HTTP proxy is made using plain unencrypted
HTTP.

If an HTTPS resource is requested, libcurl instead issues a CONNECT request to the proxy.
Such a request opens a tunnel through the proxy, where it passes data through without
understanding it. This way, libcurl can establish a secure end-to-end TLS connection even
when an HTTP proxy is present.

You can proxy non-HTTP protocols over an HTTP proxy, but since this is mostly done by
the CONNECT method to tunnel data through it requires that the proxy is configured to
allow the client to connect to those other particular remote port numbers. Many HTTP
proxies are setup to inhibit connections to other port numbers than 80 and 443.

HTTPS proxy
An HTTPS proxy is similar to an HTTP proxy but allows the client to connect to it using
a secure HTTPS connection. Since the proxy connection is separate from the connection
to the remote site even in this situation, as HTTPS to the remote site is tunneled through
the HTTPS connection to the proxy, libcurl provides a whole set of TLS options for the
proxy connection that are separate from the connection to the remote host.

For example, CURLOPT_PROXY_CAINFO is the same functionality for the HTTPS proxy as
CURLOPT_CAINFO is for the remote host. CURLOPT_PROXY_SSL_VERIFYPEER is the proxy
version of CURLOPT_SSL_VERIFYPEER and so on.

HTTPS proxies are still today fairly unusual in organizations and companies.

Proxy authentication
Authentication with a proxy means that you need to provide valid credentials in the
handshake negotiation with the proxy itself. The proxy authentication is then in addition
to and separate of the possible authentication or lack of authentication with the remote
host.

libcurl supports authentication with HTTP, HTTPS and SOCKS5 proxies. The key option
is then CURLOPT_PROXYUSERPWD which sets the user name and password to use - unless
you set it within the CURLOPT_PROXY string.

HTTP Proxy headers
With an HTTP or HTTP proxy, libcurl issues a request to the proxy that includes a set
of headers. An application can of course modify the headers, just like for requests sent to
servers.

libcurl offers the CURLOPT_PROXYHEADER for controlling the headers that are sent to a
proxy when there is a separate request sent to the server. This typically means
the initial CONNECT request sent to a proxy for setting up a tunnel through the proxy.



Transfer control

An ongoing transfer can be controlled in several ways. The following pages describe further
details:

• Stop
• Stop slow transfers
• Rate limit
• Progress meter
• Progress callback

381



Stop

An Internet transfer might be brief but can also take a long time. Maybe even an infinite
amount of time.

libcurl normally performs transfers until they are complete or until an error occurs. If
none of those events happen, the transfer continues.

At times, you might want to stop a libcurl transfer before it would otherwise stop.

easy API
As explained elsewhere, the curl_easy_perform() function is a synchronous function call.
It does the entire transfer before it returns.

There are a few different ways to stop a transfer before it would otherwise end:

1. return an error from a callback
2. set an option that makes the transfer stop after a fixed period of time

Every callback can return an error, and when an error is returned from one of those
functions the entire transfer is stopped. For example the read, write or progress callbacks.

The second way is to set a timeout or other option that stops the transfer after a time or
at a particular condition. For example one or more of the following:

1. CURLOPT_TIMEOUT - set a maximum time the entire transfer may take
2. CURLOPT_CONNECTTIMEOUT - set a maximum time “connection phase” may take
3. CURLOPT_LOW_SPEED_LIMIT - set the lowest acceptable transfer speed. The transfer

stops if slower than this speed for CURLOPT_LOW_SPEED_TIME number of second.

There is no provided function that allows your application to stop an ongoing
curl_easy_perform() call from another thread. The common suggestion is then that
you signal that intent in a private way that you can detect in a callback and have that
callback return error when it happens.

multi API
The multi interface is generally a non-blocking API, so in most situations you can
stop a transfer by removing its corresponding easy handle from the multi handle us-
ing curl_multi_remove_handle().

When you use the multi API, you might call libcurl to wait for activities or traffic on
sockets libcurl works with. A call that might sit blocking while waiting for something to

382



MULTI API 383

happen (or a timeout to expire), like curl_multi_poll().

An application can make a blocked call to curl_multi_poll() wake up and return forcibly
and immediately by calling curl_multi_wakeup() from another thread.



Stop slow transfers

By default, a transfer can stall or transfer data extremely slow for any period without that
being an error.

Stop a transfer if belowN bytes/sec duringM seconds. SetN with CURLOPT_LOW_SPEED_LIMIT
and set M with CURLOPT_LOW_SPEED_TIME.

Using these option in real code can look like this:

#include <stdio.h>
#include <curl/curl.h>

int main(void)
{

CURL *curl;
CURLcode res = CURLE_OK;

curl = curl_easy_init();
if(curl) {

/* abort if slower than 30 bytes/sec during 60 seconds */
curl_easy_setopt(curl, CURLOPT_LOW_SPEED_TIME, 60L);
curl_easy_setopt(curl, CURLOPT_LOW_SPEED_LIMIT, 30L);

curl_easy_setopt(curl, CURLOPT_URL, "https://curl.se/");

res = curl_easy_perform(curl);

curl_easy_cleanup(curl);
}

return (int)res;
}

384



Rate limit

Lets an application set a speed cap. Do not transfer data faster than a set number of bytes
per second. libcurl then attempts to keep the average speed below the given threshold
over a period of multiple seconds.

There are separate options for receiving (CURLOPT_MAX_RECV_SPEED_LARGE) and sending
(CURLOPT_MAX_SEND_SPEED_LARGE).

Here is an example source code showing it in use:

#include <stdio.h>
#include <curl/curl.h>

int main(void)
{

CURL *curl;
CURLcode res = CURLE_OK;

curl = curl_easy_init();
if(curl) {

curl_off_t maxrecv = 31415;
curl_off_t maxsend = 67954;

curl_easy_setopt(curl, CURLOPT_MAX_RECV_SPEED_LARGE, maxrecv);
curl_easy_setopt(curl, CURLOPT_MAX_SEND_SPEED_LARGE, maxsend);

curl_easy_setopt(curl, CURLOPT_URL, "https://curl.se/");

res = curl_easy_perform(curl);

curl_easy_cleanup(curl);
}

return (int)res;
}

385



Progress meter

libcurl can be made to output a progress meter on stderr. This feature is disabled
by default and is one of those options with an ones awkward negation in the name:
CURLOPT_NOPROGRESS - set it to 1L to disable progress meter. Set it to 0L to enable it.

Return error to stop transfer

It can look something like this in code:

#include <stdio.h>
#include <curl/curl.h>

int main(void)
{

CURL *curl;
CURLcode res = CURLE_OK;

curl = curl_easy_init();
if(curl) {

/* enable progress meter */
curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 0L);

curl_easy_setopt(curl, CURLOPT_URL, "https://curl.se/");

res = curl_easy_perform(curl);

curl_easy_cleanup(curl);
}

return (int)res;
}

386



Progress callback

This callback lets the application keep track of transfer progress. It is also called on idle
with the easy interface and is a common way to make libcurl stop a transfer by returning
error.

See the progress callback section for all the details.

387



Cleanup

In previous sections we have discussed how to setup handles and how to drive the transfers.
All transfers end up at some point, either successfully or with a failure.

Multi API
When you have finished a single transfer with the multi API, you use curl_multi_info_read()
to identify exactly which easy handle was completed and you remove that easy handle
from the multi handle with curl_multi_remove_handle().

If you remove the last easy handle from the multi handle so there are no more transfers
going on, you can close the multi handle like this:

curl_multi_cleanup( multi_handle );

easy handle
When the easy handle is done serving its purpose, you can close it. If you intend to do
another transfer, you are however advised to rather reuse the handle rather than to close
it and create a new one.

If you do not intend to do another transfer with the easy handle, you simply ask libcurl to
cleanup:

curl_easy_cleanup( easy_handle );

388



Post transfer info

Remember how libcurl transfers are associated with easy handles. Each transfer has such
a handle and when a transfer is completed, before the handle is cleaned or reused for
another transfer, it can be used to extract information from the previous operation.

Your friend for doing this is called curl_easy_getinfo() and you tell it which specific
information you are interested in and it returns that if it can.

When you use this function, you pass in the easy handle, which information you want and
a pointer to a variable to hold the answer. You must pass in a pointer to a variable of the
correct type or you risk that things go side-ways. These information values are designed
to be provided after the transfer is completed.

The data you receive can be a long, a ‘char ’, a ’struct curl_slist ’, a double or a socket.

This is how you extract the Content-Type: value from the previous HTTP transfer:

CURLcode res;
char *content_type;
res = curl_easy_getinfo(curl, CURLINFO_CONTENT_TYPE, &content_type);

If you want to extract the local port number that was used in that connection:

CURLcode res;
long port_number;
res = curl_easy_getinfo(curl, CURLINFO_LOCAL_PORT, &port_number);

Available information

Getinfo option Type Description
CURLINFO_ACTIVESOCKET curl_socket_tThe session’s active socket
CURLINFO_APPCONNECT_TIME double Time from start until SSL/SSH

handshake completed
CURLINFO_APPCONNECT_TIME_T curl_off_t Time from start until SSL/SSH

handshake completed (in
microseconds)

CURLINFO_CAINFO char * Path to the default CA file
libcurl is built to use

CURLINFO_CAPATH char * Path to the CA directory libcurl
is built to use

389



390 POST TRANSFER INFO

Getinfo option Type Description
CURLINFO_CERTINFO struct

curl_slist
*

Certificate chain

CURLINFO_CONDITION_UNMET long Whether or not a time
conditional was met

CURLINFO_CONNECT_TIME double Time from start until remote
host or proxy completed

CURLINFO_CONNECT_TIME_T curl_off_t Time from start until remote
host or proxy completed (in
microseconds)

CURLINFO_CONN_ID curl_off_t Numerical id of the current
connection (meant for callbacks)

CURLINFO_CONTENT_LENGTH_DOWNLOADdouble Content length from the
Content-Length header

CURLINFO_CONTENT_LENGTH_DOWNLOAD_Tcurl_off_t Content length from the
Content-Length header

CURLINFO_CONTENT_LENGTH_UPLOAD double Upload size
CURLINFO_CONTENT_LENGTH_UPLOAD_Tcurl_off_t Upload size
CURLINFO_CONTENT_TYPE char * Content type from the

Content-Type header
CURLINFO_COOKIELIST struct

curl_slist
*

List of all known cookies

CURLINFO_EFFECTIVE_METHOD char * Last used HTTP request
method

CURLINFO_EFFECTIVE_URL char * Last used URL
CURLINFO_FILETIME long Remote time of the retrieved

document
CURLINFO_FILETIME_T curl_off_t Remote time of the retrieved

document
CURLINFO_FTP_ENTRY_PATH char * The entry path after logging in

to an FTP server
CURLINFO_HEADER_SIZE long Number of bytes of all headers

received
CURLINFO_HTTP_CONNECTCODE long Last proxy CONNECT response

code
CURLINFO_HTTP_VERSION long The HTTP version used in the

connection
CURLINFO_HTTPAUTH_AVAIL long Available HTTP authentication

methods (bitmask)
CURLINFO_LASTSOCKET long Last socket used
CURLINFO_LOCAL_IP char * Local-end IP address of last

connection
CURLINFO_LOCAL_PORT long Local-end port of last

connection
CURLINFO_NAMELOOKUP_TIME double Time from start until name

resolving completed



AVAILABLE INFORMATION 391

Getinfo option Type Description
CURLINFO_NAMELOOKUP_TIME_T curl_off_t Time from start until name

resolving completed (in
microseconds)

CURLINFO_NUM_CONNECTS long Number of new successful
connections used for previous
transfer

CURLINFO_OS_ERRNO long The errno from the last failure
to connect

CURLINFO_PRETRANSFER_TIME double Time from start until just
before the transfer begins

CURLINFO_PRETRANSFER_TIME_T curl_off_t Time from start until just
before the transfer begins (in
microseconds)

CURLINFO_PRIMARY_IP char * IP address of the last connection
CURLINFO_PRIMARY_PORT long Port of the last connection
CURLINFO_PRIVATE char * User’s private data pointer
CURLINFO_PROTOCOL long The protocol used for the

connection
CURLINFO_PROXY_ERROR long Detailed (SOCKS) proxy error

if CURLE_PROXY was returned
from the transfer

CURLINFO_PROXY_SSL_VERIFYRESULT long Proxy certificate verification
result

CURLINFO_PROXYAUTH_AVAIL long Available HTTP proxy
authentication methods

CURLINFO_QUEUE_TIME_T curl_off_t Time in microseconds this
transfer was held in queue
waiting to start

CURLINFO_REDIRECT_COUNT long Total number of redirects that
were followed

CURLINFO_REDIRECT_TIME double Time taken for all redirect steps
before the final transfer

CURLINFO_REDIRECT_TIME_T curl_off_t Time taken for all redirect steps
before the final transfer (in
microseconds)

CURLINFO_REDIRECT_URL char * URL a redirect would take you
to, had you enabled redirects

CURLINFO_REFERER char * The used request Referer:
header

CURLINFO_REQUEST_SIZE long Number of bytes sent in the
issued HTTP requests

CURLINFO_RESPONSE_CODE long Last received response code
CURLINFO_RETRY_AFTER curl_off_t The value from the response

Retry-After: header
CURLINFO_RTSP_CLIENT_CSEQ long RTSP next expected client CSeq
CURLINFO_RTSP_CSEQ_RECV long RTSP last received
CURLINFO_RTSP_SERVER_CSEQ long RTSP next expected server

CSeq



392 POST TRANSFER INFO

Getinfo option Type Description
CURLINFO_RTSP_SESSION_ID char * RTSP session ID
CURLINFO_SCHEME char * The scheme used for the

connection
CURLINFO_SIZE_DOWNLOAD double Number of bytes downloaded
CURLINFO_SIZE_DOWNLOAD_T curl_off_t Number of bytes downloaded
CURLINFO_SIZE_UPLOAD double Number of bytes uploaded
CURLINFO_SIZE_UPLOAD_T curl_off_t Number of bytes uploaded
CURLINFO_SPEED_DOWNLOAD double Average download speed
CURLINFO_SPEED_DOWNLOAD_T curl_off_t Average download speed
CURLINFO_SPEED_UPLOAD double Average upload speed
CURLINFO_SPEED_UPLOAD_T curl_off_t Average upload speed
CURLINFO_SSL_ENGINES struct

curl_slist
*

A list of OpenSSL crypto
engines

CURLINFO_SSL_VERIFYRESULT long Certificate verification result
CURLINFO_STARTTRANSFER_TIME double Time from start until just when

the first byte is received
CURLINFO_STARTTRANSFER_TIME_T curl_off_t Time from start until just when

the first byte is received (in
microseconds)

CURLINFO_TLS_SSL_PTR struct
curl_slist
*

TLS session info that can be
used for further processing

CURLINFO_TOTAL_TIME double Total time of previous transfer
CURLINFO_TOTAL_TIME_T curl_off_t Total time of previous transfer

(in microseconds)
CURLINFO_XFER_ID curl_off_t Numerical id of the current

transfer (meant for callbacks)



libcurl HTTP

HTTP is by far the most commonly used protocol by libcurl users and libcurl offers
countless ways of modifying such transfers. See the HTTP protocol basics for some basics
on how the HTTP protocol works.

HTTPS
Doing HTTPS is typically done the same way as for HTTP as the extra security layer and
server verification etc is done automatically and transparently by default. Just use the
https:// scheme in the URL.

HTTPS is HTTP with TLS on top. See also the TLS transfer options section.

HTTP proxy
See using Proxies with libcurl

Sections
• HTTP responses
• HTTP requests
• HTTP versions
• HTTP ranges
• HTTP authentication
• Cookies with libcurl
• Download
• Upload
• Multiplexing
• HSTS
• alt-svc

393



Responses

Every HTTP request includes an HTTP response. An HTTP response is a set of metadata
and a response body, where the body can occasionally be zero bytes and thus nonexistent.
An HTTP response however always has response headers.

Response body
The response body is passed to the write callback and the response headers to the header
callback.

Virtually all libcurl-using applications need to set at least one of those callbacks instructing
libcurl what to do with received headers and data.

Response meta-data
libcurl offers the curl_easy_getinfo() function that allows an application to query
libcurl for information from the previously performed transfer.

Sometimes an application just want to know the size of the data. The size of a response
as told by the server headers can be extracted with curl_easy_getinfo() like this:

curl_off_t size;
curl_easy_getinfo(curl, CURLINFO_CONTENT_LENGTH_DOWNLOAD_T, &size);

If you can wait until after the transfer is already done, which also is a more reliable way
since not all URLs provide the size up front (like for example for servers that generate
content on demand) you can instead ask for the amount of downloaded data in the most
recent transfer.

curl_off_t size;
curl_easy_getinfo(curl, CURLINFO_SIZE_DOWNLOAD_T, &size);

HTTP response code
Every HTTP response starts off with a single line that contains the HTTP response code.
It is a three digit number that contains the server’s idea of the status for the request. The
numbers are detailed in the HTTP standard specifications but they are divided into ranges
that work like this:

394



ABOUT HTTP RESPONSE CODE “ERRORS” 395

Code Meaning
1xx Transient code, a new one follows
2xx Things are OK
3xx The content is somewhere else
4xx Failed because of a client problem
5xx Failed because of a server problem

You can extract the response code after a transfer like this

long code;
curl_easy_getinfo(curl, CURLINFO_RESPONSE_CODE, &code);

About HTTP response code “errors”
While the response code numbers can include numbers (in the 4xx and 5xx ranges) which
the server uses to signal that there was an error processing the request, it is important to
realize that this does not make libcurl return an error.

When libcurl is asked to perform an HTTP transfer it returns an error if that HTTP
transfer fails. However, getting an HTTP 404 or the like back is not a problem for libcurl.
It is not an HTTP transfer error. A user might be writing a client for testing a server’s
HTTP responses.

If you insist on curl treating HTTP response codes from 400 and up as errors,
libcurl offers the CURLOPT_FAILONERROR option that if set instructs curl to return
CURLE_HTTP_RETURNED_ERROR in this case. It then returns error as soon as possible and
does not deliver the response body.



Requests

An HTTP request is what curl sends to the server when it tells the server what to do.
When it wants to get data or send data. All transfers involving HTTP start with an
HTTP request.

An HTTP request contains a method, a path, HTTP version and a set of request headers.
A libcurl-using application can tweak all those fields.

Request method
Every HTTP request contains a “method”, sometimes referred to as a “verb”. It is usually
something like GET, HEAD, POST or PUT but there are also more esoteric ones like
DELETE, PATCH and OPTIONS.

Usually when you use libcurl to set up and perform a transfer the specific request method
is implied by the options you use. If you just ask for a URL, it means the method is GET
while if you set for example CURLOPT_POSTFIELDS that makes libcurl use the POST method.
If you set CURLOPT_UPLOAD to true, libcurl sends a PUT method in its HTTP request and
so on. Asking for CURLOPT_NOBODY makes libcurl use HEAD.

However, sometimes those default HTTP methods are not good enough or simply not
the ones you want your transfer to use. Then you can instruct libcurl to use the specific
method you like with CURLOPT_CUSTOMREQUEST. For example, you want to send a DELETE
method to the URL of your choice:

curl_easy_setopt(curl, CURLOPT_CUSTOMREQUEST, "DELETE");
curl_easy_setopt(curl, CURLOPT_URL, "https://example.com/file.txt");

The CURLOPT_CUSTOMREQUEST setting should only be the single keyword to use as
method in the HTTP request line. If you want to change or add additional HTTP request
headers, see the following section.

Customize HTTP request headers
When libcurl issues HTTP requests as part of performing the data transfers you have
asked it to, it sends them off with a set of HTTP headers that are suitable for fulfilling
the task given to it.

If just given the URL http://localhost/file1.txt, libcurl sends the following request
to the server:

GET /file1.txt HTTP/1.1

396



CUSTOMIZE HTTP REQUEST HEADERS 397

Host: localhost
Accept: */*

If you instruct your application to also set CURLOPT_POSTFIELDS to the string “foobar”
(6 letters, the quotes only used for visual delimiters here), it would send the following
headers:

POST /file1.txt HTTP/1.1
Host: localhost
Accept: */*
Content-Length: 6
Content-Type: application/x-www-form-urlencoded

If you are not pleased with the default set of headers libcurl sends, the application has the
power to add, change or remove headers in the HTTP request.

Add a header
To add a header that would not otherwise be in the request, add it with
CURLOPT_HTTPHEADER. Suppose you want a header called Name: that contains
Mr. Smith:

struct curl_slist *list = NULL;
list = curl_slist_append(list, "Name: Mr Smith");
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, list);
curl_easy_perform(curl);
curl_slist_free_all(list); /* free the list again */

Change a header
If one of those default headers are not to your satisfaction you can alter them. Like if you
think the default Host: header is wrong (even though it is derived from the URL you give
libcurl), you can tell libcurl your own:

struct curl_slist *list = NULL;
list = curl_slist_append(list, "Host: Alternative");
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, list);
curl_easy_perform(curl);
curl_slist_free_all(list); /* free the list again */

Remove a header
When you think libcurl uses a header in a request that you really think it should not, you
can easily tell it to just remove it from the request. Like if you want to take away the
Accept: header. Just provide the header name with nothing to the right sight of the
colon:

struct curl_slist *list = NULL;
list = curl_slist_append(list, "Accept:");
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, list);
curl_easy_perform(curl);
curl_slist_free_all(list); /* free the list again */



398 REQUESTS

Provide a header without contents
As you may then have noticed in the above sections, if you try to add a header with no
contents on the right side of the colon, it is treated as a removal instruction and it instead
completely inhibits that header from being sent. If you instead truly want to send a header
with zero contents on the right side, you need to use a special marker. You must provide
the header with a semicolon instead of a proper colon. Like Header;. If you want to add
a header to the outgoing HTTP request that is just Moo: with nothing following the colon,
you could write it like:

struct curl_slist *list = NULL;
list = curl_slist_append(list, "Moo;");
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, list);
curl_easy_perform(curl);
curl_slist_free_all(list); /* free the list again */

Referrer
The Referer: header (yes, it is misspelled) is a standard HTTP header that tells the
server from which URL the user-agent was directed from when it arrived at the URL it
now requests. It is a normal header so you can set it yourself with the CURLOPT_HEADER
approach as shown above, or you can use the shortcut known as CURLOPT_REFERER. Like
this:

curl_easy_setopt(curl, CURLOPT_REFERER, "https://example.com/fromhere/");
curl_easy_perform(curl);

Automatic referrer
When libcurl is asked to follow redirects itself with the CURLOPT_FOLLOWLOCATION option,
and you still want to have the Referer: header set to the correct previous URL from
where it did the redirect, you can ask libcurl to set that by itself:

curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L);
curl_easy_setopt(curl, CURLOPT_AUTOREFERER, 1L);
curl_easy_setopt(curl, CURLOPT_URL, "https://example.com/redirected.cgi");
curl_easy_perform(curl);



Versions

Like all Internet protocols, the HTTP protocol has kept evolving over the years and now
there are clients and servers distributed over the world and over time that speak different
versions with varying levels of success. In order to get libcurl to work with the URLs
you pass in, libcurl offers ways for you to specify which HTTP version to use. libcurl is
designed in a way so that it tries to use the most common, the most sensible if you want,
default values first but sometimes that is not enough and then you may need to instruct
libcurl what to do.

libcurl defaults to using HTTP/2 for HTTPS servers if you use a libcurl build with
HTTP/2 abilities built-in. libcurl then attempts to use HTTP/2 automatically or falls
back to 1.1 in case the negotiation failed. Non-HTTP/2 capable libcurls use HTTP/1.1
over HTTPS by default. Plain HTTP requests default to HTTP/1.1.

If the default behavior is not good enough for your transfer, the CURLOPT_HTTP_VERSION
option is there for you.

Option Description
CURL_HTTP_VERSION_NONE Reset back to default

behavior
CURL_HTTP_VERSION_1_0 Enforce use of the

legacy HTTP/1.0
protocol version

CURL_HTTP_VERSION_1_1 Do the request using
the HTTP/1.1
protocol version

CURL_HTTP_VERSION_2_0 Attempt to use
HTTP/2

CURL_HTTP_VERSION_2TLS Attempt to use
HTTP/2 on HTTPS
connections only,
otherwise do
HTTP/1.1

CURL_HTTP_VERSION_2_PRIOR_KNOWLEDGE Use HTTP/2 straight
away without
“upgrading” from 1.1.
It requires that you
know that this server
is OK with it.

399



400 VERSIONS

Option Description
CURL_HTTP_VERSION_3 Try HTTP/3, allow

fallback to older
version.

CURL_HTTP_VERSION_3ONLY Use HTTP/3 or fail
if not possible

Version 2 not mandatory
When asking libcurl to use HTTP/2, it is an ask not a requirement. libcurl then allows
the server to select to use HTTP/1.1 or HTTP/2 and that is what decides which protocol
that is ultimately used.

Version 3 can be mandatory
When asking libcurl to use HTTP/3 with the CURL_HTTP_VERSION_3 option, it makes
libcurl do a second connection attempt in parallel but slightly delayed, so that if the
HTTP/3 connection fails, it can still try and use an older HTTP version.

Using CURL_HTTP_VERSION_3ONLY means that the fallback mechanism is not used and a
failed QUIC connection fails the transfer completely.



Ranges

What if the client only wants the first 200 bytes out of a remote resource or perhaps 300
bytes somewhere in the middle? The HTTP protocol allows a client to ask for only a
specific data range. The client asks the server for the specific range with a start offset
and an end offset. It can even combine things and ask for several ranges in the same
request by just listing a bunch of pieces next to each other. When a server sends back
multiple independent pieces to answer such a request, you get them separated with mime
boundary strings and it is up to the user application to handle that accordingly. curl does
not further separate such a response.

However, a byte range is only a request to the server. It does not have to respect the
request and in many cases, like when the server automatically generates the contents on
the fly when it is being asked, it simply refuses to do it and it then instead respond with
the full contents anyway.

You can make libcurl ask for a range with CURLOPT_RANGE. Like if you want the first 200
bytes out of something:

curl_easy_setopt(curl, CURLOPT_RANGE, "0-199");

Or everything in the file starting from index 200:

curl_easy_setopt(curl, CURLOPT_RANGE, "200-");

Get 200 bytes from index 0 and 200 bytes from index 1000:

curl_easy_setopt(curl, CURLOPT_RANGE, "0-199,1000-199");

401



Authentication

libcurl supports a wide variety of HTTP authentication schemes.

Note that this way of authentication is different than the otherwise widely used scheme on
the web today where authentication is performed by an HTTP POST and then keeping
state in cookies. See Cookies with libcurl for details on how to do that.

User name and password
libcurl does not try any HTTP authentication without a given user name. Set one like:

curl_easy_setopt(curl, CURLOPT_USERNAME, "joe");

and of course most authentications also require a set password that you set separately:

curl_easy_setopt(curl, CURLOPT_PASSWORD, "secret");

That is all you need. This makes libcurl switch on its default authentication method for
this transfer: HTTP Basic.

Authentication required
A client does not itself decide that it wants to send an authenticated request. It is
something the server requires. When the server has a resource that is protected and
requires authentication, it responds with a 401 HTTP response and a WWW-Authenticate:
header. The header includes details about what specific authentication methods it accepts
for that resource.

Basic
Basic is the default HTTP authentication method and as its name suggests, it is indeed
basic. It takes the name and the password, separates them with a colon and base64
encodes that string before it puts the entire thing into a Authorization: HTTP header
in the request.

If the name and password is set like the examples shown above, the exact outgoing header
looks like this:

Authorization: Basic am9lOnNlY3JldA==

This authentication method is totally insecure over HTTP as the credentials are sent in
plain-text over the network.

402



DIGEST 403

You can explicitly tell libcurl to use Basic method for a specific transfer like this:

curl_easy_setopt(curl, CURLOPT_HTTPAUTH, CURLAUTH_BASIC);

Digest
Another HTTP authentication method is called Digest. One advantage this method has
compared to Basic, is that it does not send the password over the wire in plain text. This
is however an authentication method that is rarely spoken by browsers and consequently
is not a frequently used one.

You can explicitly tell libcurl to use the Digest method for a specific transfer like this (it
still needs user name and password set as well):

curl_easy_setopt(curl, CURLOPT_HTTPAUTH, CURLAUTH_DIGEST);

NTLM
Another HTTP authentication method is called NTLM.

You can explicitly tell libcurl to use the NTLM method for a specific transfer like this (it
still needs user name and password set as well):

curl_easy_setopt(curl, CURLOPT_HTTPAUTH, CURLAUTH_NTLM);

Negotiate
Another HTTP authentication method is called Negotiate.

You can explicitly tell libcurl to use the Negotiate method for a specific transfer like this
(it still needs user name and password set as well):

curl_easy_setopt(curl, CURLOPT_HTTPAUTH, CURLAUTH_NEGOTIATE);

Bearer
To pass on an OAuth 2.0 Bearer Access Token in a request, use CURLOPT_XOAUTH2_BEARER
for example:

CURL *curl = curl_easy_init();
if(curl) {

curl_easy_setopt(curl, CURLOPT_URL, "pop3://example.com/");
curl_easy_setopt(curl, CURLOPT_XOAUTH2_BEARER, "1ab9cb22ba269a7");
ret = curl_easy_perform(curl);
curl_easy_cleanup(curl);

}

Try-first
Some HTTP servers allow one out of several authentication methods, in some cases you
find yourself in a position where you as a client does not want or is not able to select a



404 AUTHENTICATION

single specific method before-hand and for yet another subset of cases your application
does not know if the requested URL even require authentication or not.

libcurl covers all these situations as well.

You can ask libcurl to use more than one method, and when doing so, you imply that
curl first tries the request without any authentication at all and then based on the
HTTP response coming back, it selects one of the methods that both the server and your
application allow. If more than one would work, curl picks them in a order based on how
secure the methods are considered to be, picking the safest of the available methods.

Tell libcurl to accept multiple method by bitwise ORing them like this:

curl_easy_setopt(curl, CURLOPT_HTTPAUTH,
CURLAUTH_BASIC | CURLAUTH_DIGEST);

If you want libcurl to only allow a single specific method but still want it to probe first to
check if it can possibly still make the request without the use of authentication, you can
force that behavior by adding CURLAUTH_ONLY to the bitmask.

Ask to use digest, but nothing else but digest, and only if proven really necessary:

curl_easy_setopt(curl, CURLOPT_HTTPAUTH,
CURLAUTH_DIGEST | CURLAUTH_ONLY);



Cookies

By default and by design, libcurl makes transfers as basic as possible and features need to
be enabled to get used. One such feature is HTTP cookies, more known as just plain and
simply cookies.

Cookies are name/value pairs sent by the server (using a Set-Cookie: header) to be
stored in the client, and are then supposed to get sent back again in requests that matches
the host and path requirements that were specified along with the cookie when it came
from the server (using the Cookie: header). On the modern web of today, sites are known
to sometimes use large numbers of cookies.

Cookie engine
When you enable the cookie engine for a specific easy handle, it means that it records
incoming cookies, stores them in the in-memory cookie store that is associated with the
easy handle and subsequently sends the proper ones back if an HTTP request is made
that matches.

There are two ways to switch on the cookie engine:

Enable cookie engine with reading
Ask libcurl to import cookies into the easy handle from a given filename with the
CURLOPT_COOKIEFILE option:

curl_easy_setopt(easy, CURLOPT_COOKIEFILE, "cookies.txt");

A common trick is to just specify a non-existing filename or plain "" to have it just activate
the cookie engine with a blank cookie store to start with.

This option can be set multiple times and then each of the given files are read.

Enable cookie engine with writing
Ask for received cookies to get stored in a file with the CURLOPT_COOKIEJAR option:

curl_easy_setopt(easy, CURLOPT_COOKIEJAR, "cookies.txt");

when the easy handle is closed later with curl_easy_cleanup(), all known cookies are
stored in the given file. The file format is the well-known Netscape cookie file format that
browsers also once used.

405



406 COOKIES

Setting custom cookies
A simpler and more direct way to just pass on a set of specific cookies in a request that
does not add any cookies to the cookie store and does not even activate the cookie engine,
is to set the set with CURLOPT_COOKIE:

curl_easy_setopt(easy, CURLOPT_COOKIE, "name=daniel; present=yes;");

The string you set there is the raw string that would be sent in the HTTP request and
should be in the format of repeated sequences of NAME=VALUE; - including the semicolon
separator.

Import export
The cookie in-memory store can hold a bunch of cookies, and libcurl offers very powerful
ways for an application to play with them. You can set new cookies, you can replace an
existing cookie and you can extract existing cookies.

Add a cookie to the cookie store
Add a new cookie to the cookie store by simply passing it into curl with
CURLOPT_COOKIELIST with a new cookie. The format of the input is a single line
in the cookie file format, or formatted as a Set-Cookie: response header, but we
recommend the cookie file style:

#define SEP "\t" /* Tab separates the fields */

char *my_cookie =
"example.com" /* Hostname */
SEP "FALSE" /* Include subdomains */
SEP "/" /* Path */
SEP "FALSE" /* Secure */
SEP "0" /* Expiry in epoch time format. 0 == Session */
SEP "foo" /* Name */
SEP "bar"; /* Value */

curl_easy_setopt(curl, CURLOPT_COOKIELIST, my_cookie);

If that given cookie would match an already existing cookie (with the same domain and
path, etc.), it would overwrite the old one with the new contents.

Get all cookies from the cookie store
Sometimes writing the cookie file when you close the handle is not enough and then your
application can opt to extract all the currently known cookies from the store like this:

struct curl_slist *cookies
curl_easy_getinfo(easy, CURLINFO_COOKIELIST, &cookies);

This returns a pointer to a linked list of cookies, and each cookie is (again) specified as a
single line of the cookie file format. The list is allocated for you, so do not forget to call
curl_slist_free_all when the application is done with the information.



COOKIE FILE FORMAT 407

Cookie store commands
If setting and extracting cookies is not enough, you can also interfere with the cookie store
in more ways:

Wipe the entire in-memory storage clean with:

curl_easy_setopt(curl, CURLOPT_COOKIELIST, "ALL");

Erase all session cookies (cookies without expiry date) from memory:

curl_easy_setopt(curl, CURLOPT_COOKIELIST, "SESS");

Force a write of all cookies to the filename previously specified with CURLOPT_COOKIEJAR:

curl_easy_setopt(curl, CURLOPT_COOKIELIST, "FLUSH");

Force a reload of cookies from the filename previously specified with CURLOPT_COOKIEFILE:

curl_easy_setopt(curl, CURLOPT_COOKIELIST, "RELOAD");

Cookie file format
The cookie file format is text based and stores one cookie per line. Lines that start with #
are treated as comments.

Each line that each specifies a single cookie consists of seven text fields separated with
TAB characters.

Field Example Meaning
0 example.com Domain name
1 FALSE Include subdomains boolean
2 /foobar/ Path
3 FALSE Set over a secure transport
4 1462299217 Expires at – seconds since Jan 1st 1970, or 0
5 person Name of the cookie
6 daniel Value of the cookie



Download

The GET method is the default method libcurl uses when an HTTP URL is requested and
no particular other method is asked for. It asks the server for a particular resource—the
standard HTTP download request:

easy = curl_easy_init();
curl_easy_setopt(easy, CURLOPT_URL, "http://example.com/");
curl_easy_perform(easy);

Since options set in an easy handle are sticky and remain until changed, there may be times
when you have asked for another request method than GET and then want to switch back
to GET again for a subsequent request. For this purpose, there is the CURLOPT_HTTPGET
option:

curl_easy_setopt(easy, CURLOPT_HTTPGET, 1L);

Download headers too
An HTTP transfer also includes a set of response headers. Response headers are metadata
associated with the actual payload, called the response body. All downloads get a set
of headers too, but when using libcurl you can select whether you want to have them
downloaded (seen) or not.

You can ask libcurl to pass on the headers to the same stream as the regular body is, by
using CURLOPT_HEADER:

easy = curl_easy_init();
curl_easy_setopt(easy, CURLOPT_HEADER, 1L);
curl_easy_setopt(easy, CURLOPT_URL, "http://example.com/");
curl_easy_perform(easy);

Or you can opt to store the headers in a separate download file, by relying on the default
behaviors of the write and header callbacks:

easy = curl_easy_init();
FILE *file = fopen("headers", "wb");
curl_easy_setopt(easy, CURLOPT_HEADERDATA, file);
curl_easy_setopt(easy, CURLOPT_URL, "http://example.com/");
curl_easy_perform(easy);
fclose(file);

If you only want to casually browse the headers, you may even be happy enough with just
setting verbose mode while developing as that shows both outgoing and incoming headers

408



DOWNLOAD HEADERS TOO 409

sent to stderr:

curl_easy_setopt(easy, CURLOPT_VERBOSE, 1L);



Upload

Uploads over HTTP can be done in many different ways and it is important to notice the
differences. They can use different methods, like POST or PUT, and when using POST
the body formatting can differ.

In addition to those HTTP differences, libcurl offers different ways to provide the data to
upload.

HTTP POST
POST is typically the HTTP method to pass data to a remote web application. A common
way to do that in browsers is by filling in an HTML form and pressing submit. It is
the standard way for an HTTP request to pass on data to the server. With libcurl you
normally provide that data as a pointer and a length:

curl_easy_setopt(easy, CURLOPT_POSTFIELDS, dataptr);
curl_easy_setopt(easy, CURLOPT_POSTFIELDSIZE, (long)datalength);

Or you tell libcurl that it is a post but would prefer to have libcurl instead get the data
by using the regular read callback:

curl_easy_setopt(easy, CURLOPT_POST, 1L);
curl_easy_setopt(easy, CURLOPT_READFUNCTION, read_callback);

This “normal” POST also sets the request header Content-Type: application/x-www-form-urlencoded.

HTTP multipart formposts
A multipart formpost is still using the same HTTP method POST; the difference is only
in the formatting of the request body. A multipart formpost is a series of separate “parts”,
separated by MIME-style boundary strings. There is no limit to how many parts you can
send.

Each such part has a name, a set of headers and a few other properties.

libcurl offers a set of convenience functions for constructing such a series of parts and to
send that off to the server, all prefixed with curl_mime. Create a multipart post and for
each part in the data you set the name, the data and perhaps additional meta-data. A
basic setup might look like this:

/* Create the form */
form = curl_mime_init(curl);

410



HTTP PUT 411

/* Fill in the file upload field */
field = curl_mime_addpart(form);
curl_mime_name(field, "sendfile");
curl_mime_filedata(field, "photo.jpg");

Then you pass that post to libcurl like this:

curl_easy_setopt(easy, CURLOPT_MIMEPOST, form);

(curl_formadd is the former API to build multi-part formposts with but we no longer
recommend using that)

HTTP PUT
A PUT with libcurl assumes you pass the data to it using the read callback, as that is
the typical “file upload” pattern libcurl uses and provides. You set the callback, you ask
for PUT (by asking for CURLOPT_UPLOAD), you set the size of the upload and you set the
URL to the destination:

curl_easy_setopt(easy, CURLOPT_UPLOAD, 1L);
curl_easy_setopt(easy, CURLOPT_INFILESIZE_LARGE, (curl_off_t) size);
curl_easy_setopt(easy, CURLOPT_READFUNCTION, read_callback);
curl_easy_setopt(easy, CURLOPT_URL, "https://example.com/handle/put");

If you for some reason do not know the size of the upload before the transfer starts,
and you are using HTTP 1.1 you can add a Transfer-Encoding: chunked header with
CURLOPT_HTTPHEADER. For HTTP 1.0 you must provide the size before hand and
for HTTP 2 and later, neither the size nor the extra header is needed.

Expect: headers
When doing HTTP uploads using HTTP 1.1, libcurl inserts an Expect: 100-continue
header in some circumstances. This header offers the server a way to reject the transfer
early and save the client from having to send a lot of data in vain before the server gets a
chance to decline.

The header is added by libcurl if HTTP uploading is done with CURLOPT_UPLOAD or if it
is asked to do an HTTP POST for which the body size is either unknown or known to be
larger than 1024 bytes.

A libcurl-using client can explicitly disable the use of the Expect: header with the
CURLOPT_HTTPHEADER option.

This header is not used with HTTP/2 or HTTP/3.

Uploads also downloads
HTTP is a protocol that can respond with contents back even when you upload data to it
- it is up to the server to decide. The response data may even start getting sent back to
the client before the upload has completed.



Multiplexing

The HTTP versions 2 and 3 offer “multiplexing”. Using this protocol feature, an HTTP
client can do several concurrent transfers to a server over the same single connection. This
feature does not exist in earlier versions of the HTTP protocol. In earlier HTTP versions,
the client would either have to create multiple connections or do the transfers in a serial
manner, one after the other.

libcurl supports HTTP multiplexing for both HTTP/2 and HTTP/3.

Make sure you do multiple transfers using the multi interface to a server that supports
HTTP multiplexing. libcurl can only multiplex transfers when the same hostname is used
for subsequent transfers.

For all practical purposes and API behaviors, an application does not have to care about
if multiplexing is done or not.

libcurl enables multiplexing by default, but if you start multiple transfers at the same
time they prioritize short-term speed so they might then open new connections rather
than waiting for a connection to get created by another transfer to be able to multiplex
over. To tell libcurl to prioritize multiplexing, set the CURLOPT_PIPEWAIT option for the
transfer with curl_easy_setopt().

With curl_multi_setopt()’s option CURLMOPT_PIPELINING, you can disable multiplexing
for a specific multi handle.

412



HSTS

HSTS is short for HTTP Strict-Transport-Security. It is a defined way for a server to tell
a client that the client should prefer to use HTTPS with that site for a specified period of
time into the future.

Here is how you use HSTS with libcurl.

In-memory cache
libcurl primarily features an in-memory cache for HSTS hosts, so that subsequent HTTP-
only requests to a hostname present in the cache gets internally “redirected” to the HTTPS
version. Assuming you have this feature enabled.

Enable HSTS for a handle
HSTS is enabled by setting the correct bitmask using the CURLOPT_HSTS_CTRL option
with curl_easy_setopt(). The bitmask has two separate flags that can be used, but
CURLHSTS_ENABLE is the primary one. If that is set, then this easy handle how has HSTS
support enabled.

The second flag available for this option is CURLHSTS_READONLYFILE, which if set, tells
libcurl that the filename you specify for it to use as a HSTS cache is only to be read from,
and not write anything back to.

Set a HSTS cache file
If you want to persist the HSTS cache on disk, then set a filename with the CURLOPT_HSTS
option. libcurl reads from this file at start of a transfer and writes to it (unless it was set
read-only) when the easy handle is closed.

413



alt-svc

Alternative Services, aka alt-svc, is an HTTP header that lets a server tell the client
that there is one or more alternatives for that server at another place with the use of the
Alt-Svc: response header.

The alternatives the server suggests can include a server running on another port on the
same host, on another completely different hostname and it can also offer the service over
another protocol.

Enable
To make libcurl consider any offered alternatives by serves, you must first enable it in the
handle. You do this by setting the correct bitmask to the CURLOPT_ALTSVC_CTRL option.
The bitmask allows the application to limit what HTTP versions to allow, and if the cache
file on disk should only be used to read from (not write).

Enable alt-svc and allow it to switch to either HTTP/1 or HTTP/2:

curl_easy_setopt(curl, CURLOPT_ALTSVC_CTRL, CURLALTSVC_H1|CURLALTSVC_H2);

Tell libcurl to use a specific alt-svc cache file like this:

curl_easy_setopt(curl, CURLOPT_ALTSVC, "altsvc-cache.txt");

libcurl holds the list of alternatives in a memory-based cache, but loads all already existing
alternative service entries from the alt-svc file at start-up and consider those when doing its
subsequent HTTP requests. If servers responds with new or updated Alt-Svc: headers,
libcurl stores those in the cache file at exit (unless the CURLALTSVC_READONLYFILE bit was
set).

The alt-svc cache
The alt-svc cache is similar to a cookie jar. It is a text based file that stores one alternative
per line and each entry also has an expiry time for which duration that particular alternative
is valid.

HTTPS only
Alt-Svc: is only trusted and parsed from servers when connected to over HTTPS.

414



HTTP/3 415

HTTP/3
The use of Alt-Svc: headers is as of March 2022 still the only defined way to bootstrap
a client and server into using HTTP/3. The server then hints to the client over HTTP/1
or HTTP/2 that it also is available over HTTP/3 and then curl can connect to it using
HTTP/3 in the subsequent request if the alt-svc cache says so.



libcurl helpers

Doing transfers is good but in order to do effective transfers applications often need some
extra API and super-powers.

• Share data between handles
• URL API
• WebSocket
• Headers API

416



Share data between handles

Sometimes applications need to share data between transfers. All easy handles added to
the same multi handle automatically get a lot of sharing done between the handles in that
same multi handle, but sometimes that is not exactly what you want.

Multi handle
All easy handles added to the same multi handle automatically share connection cache
and dns cache.

Sharing between easy handles
libcurl has a generic “sharing interface”, where the application creates a “share object”
that then holds data that can be shared by any number of easy handles. The data is then
stored and read from the shared object instead of kept within the handles that are sharing
it.

CURLSH *share = curl_share_init();

The shared object can be set to share all or any of cookies, connection cache, dns cache
and SSL session id cache.

For example, setting up the share to hold cookies and dns cache:

curl_share_setopt(share, CURLSHOPT_SHARE, CURL_LOCK_DATA_COOKIE);
curl_share_setopt(share, CURLSHOPT_SHARE, CURL_LOCK_DATA_DNS);

You then set up the corresponding transfer to use this share object:

curl_easy_setopt(curl, CURLOPT_SHARE, share);

Transfers done with this curl handle uses and stores its cookie and dns information in
the share handle. You can set several easy handles to share the same share object.

What to share
CURL_LOCK_DATA_COOKIE - set this bit to share cookie jar. Note that each easy handle
still needs to get its cookie “engine” started properly to start using cookies.

CURL_LOCK_DATA_DNS - the DNS cache is where libcurl stores addresses for resolved host
names for a while to make subsequent lookups faster.

417



418 SHARE DATA BETWEEN HANDLES

CURL_LOCK_DATA_SSL_SESSION - the SSL session ID cache is where libcurl store resume
information for SSL connections to be able to resume a previous connection faster.

CURL_LOCK_DATA_CONNECT - when set, this handle uses a shared connection cache and
thus is more likely to find existing connections to re-use etc, which may result in faster
performance when doing multiple transfers to the same host in a serial manner.

Locking
If you want have the share object shared by transfers in a multi-threaded environment.
Perhaps you have a CPU with many cores and you want each core to run its own thread
and transfer data, but you still want the different transfers to share data. Then you need
to set the mutex callbacks.

If you do not use threading and you know you access the shared object in a serial one-at-a-
time manner you do not need to set any locks. But if there is ever more than one transfer
that access share object at a time, it needs to get mutex callbacks setup to prevent data
destruction and possibly even crashes.

Since libcurl itself does not know how to lock things or even what threading model you
are using, you must make sure to do mutex locks that only allows one access at a time. A
lock callback for a pthreads-using application could look similar to:

static void lock_cb(CURL *handle, curl_lock_data data,
curl_lock_access access, void *userptr)

{
pthread_mutex_lock(&lock[data]); /* uses a global lock array */

}
curl_share_setopt(share, CURLSHOPT_LOCKFUNC, lock_cb);

With the corresponding unlock callback could look like:

static void unlock_cb(CURL *handle, curl_lock_data data,
void *userptr)

{
pthread_mutex_unlock(&lock[data]); /* uses a global lock array */

}
curl_share_setopt(share, CURLSHOPT_UNLOCKFUNC, unlock_cb);

Unshare
A transfer uses the share object during its transfer and share what that object has been
specified to share with other handles sharing the same object.

In a subsequent transfer, CURLOPT_SHARE can be set to NULL to prevent a transfer from
continuing to share. It that case, the handle may start the next transfer with empty caches
for the data that was previously shared.

Between two transfers, a share object can also get updated to share a different set of
properties so that the handles that share that object shares a different set of data next
time. You remove an item to share from a shared object with the curl_share_setopt()’s
CURLSHOPT_UNSHARE option like this when unsharing DNS data:



UNSHARE 419

curl_share_setopt(share, CURLSHOPT_UNSHARE, CURL_LOCK_DATA_DNS);



URL API

libcurl offers an API for parsing, updating and generating URLs. Using this, applications
can take advantage of using libcurl’s URL parser for its own purposes. By using the same
parser, security problems due to different interpretations can be avoided.

• Include files
• Create, cleanup, duplicate
• Parse a URL
• Redirect to URL
• Get a URL
• Get URL parts
• Set URL parts
• Append to the query
• CURLOPT_CURLU

420



Include files

You include <curl/curl.h> in your code when you want to use the URL API.

#include <curl/curl.h>

CURLU *h = curl_url();
rc = curl_url_set(h, CURLUPART_URL, "ftp://example.com/no/where", 0);

421



Create, cleanup, duplicate

The first step when using this API is to create a CURLU * handle that holds URL info and
resources. The handle is a reference to an associated data object that holds information
about a single URL and all its different components.

The API allows you to set or get each URL component separately or as a full URL.

Create a URL handle like this:

CURLU *h = curl_url();

When you are done with it, clean it up:

curl_url_cleanup(h);

When you need a copy of a handle, just duplicate it:

CURLU *nh = curl_url_dup(h);

422



Parse a URL

You parse a full URL by setting the CURLUPART_URL part in the handle:

CURLU *h = curl_url();
rc = curl_url_set(h, CURLUPART_URL,

"https://example.com:449/foo/bar?name=moo", 0);

If successful, rc contains CURLUE_OK and the different URL components are held in the
handle. It means that the URL was valid as far as libcurl concerns.

The function call’s forth argument is a bitmask. Set none, one or more bits in that to alter
the parser’s behavior:

CURLU_NON_SUPPORT_SCHEME

Makes curl_url_set() accept a non-supported scheme. If not set, the only acceptable
schemes are for the protocols libcurl knows and have built-in support for.

CURLU_URLENCODE

Makes the function URL encode the path part if any bytes in it would benefit from that:
like spaces or “control characters”.

CURLU_DEFAULT_SCHEME

If the passed in string does not use a scheme, assume that the default one was intended.
The default scheme is HTTPS. If this is not set, a URL without a scheme part is not
accepted as valid. Overrides the CURLU_GUESS_SCHEME option if both are set.

CURLU_GUESS_SCHEME

Makes libcurl allow the URL to be set without a scheme and it instead “guesses” which
scheme that was intended based on the hostname. If the outermost sub-domain name
matches DICT, FTP, IMAP, LDAP, POP3 or SMTP then that scheme is used, otherwise
it picks HTTP. Conflicts with the CURLU_DEFAULT_SCHEME option which takes precedence
if both are set.

423



424 PARSE A URL

CURLU_NO_AUTHORITY

Skips authority checks. The RFC allows individual schemes to omit the host part (normally
the only mandatory part of the authority), but libcurl cannot know whether this is
permitted for custom schemes. Specifying the flag permits empty authority sections,
similar to how the file scheme is handled. Really only usable in combination with
CURLU_NON_SUPPORT_SCHEME.

CURLU_PATH_AS_IS

Makes libcurl skip the normalization of the path. That is the procedure where curl
otherwise removes sequences of dot-slash and dot-dot etc. The same option used for
transfers is called CURLOPT_PATH_AS_IS.

CURLU_ALLOW_SPACE

Makes the URL parser allow space (ASCII 32) where possible. The URL syntax does
normally not allow spaces anywhere, but they should be encoded as %20 or +. When
spaces are allowed, they are still not allowed in the scheme. When space is used and
allowed in a URL, it is stored as-is unless CURLU_URLENCODE is also set, which then makes
libcurl URL-encode the space before stored. This affects how the URL is constructed
when curl_url_get() is subsequently used to extract the full URL or individual parts.



Redirect to URL

When the handle already has parsed a URL, setting a second relative URL makes it
“redirect” to adapt to it.

Example, first set the original URL then set the one we “redirect” to:

CURLU *h = curl_url();
rc = curl_url_set(h, CURLUPART_URL,

"https://example.com/foo/bar?name=moo", 0);

rc = curl_url_set(h, CURLUPART_URL, "../test?another", 0);

425



Get a URL

The CURLU * handle represents a single URL and you can easily extract that full URL or
its individual parts with curl_url_get:

char *url;
rc = curl_url_get(h, CURLUPART_URL, &url, CURLU_NO_DEFAULT_PORT);
curl_free(url);

If the handle does not have enough information to return the part that is being asked for,
it returns error.

A returned string must be freed with curl_free() after you are done with it.

426



Flags

When retrieving a URL part using curl_url_get(), the API offers a few different toggles
to better specify exactly how that content should be returned. They are set in the flags
bitmask parameter, which is the function’s fourth argument. You can set zero, one or
more bits.

CURLU_DEFAULT_PORT

If the URL handle has no port number stored, this option makes curl_url_get() return
the default port for the used scheme.

CURLU_DEFAULT_SCHEME

If the handle has no scheme stored, this option makes curl_url_get() return the default
scheme instead of error.

CURLU_NO_DEFAULT_PORT

Instructs curl_url_get() to not use a port number in the generated URL if that port
number matches the default port used for the scheme. For example, if port number 443 is
set and the scheme is https, the extracted URL does not include the port number.

CURLU_URLENCODE

This flag makes curl_url_get() URL encode the hostname part when a full URL is
retrieved. If not set (default), libcurl returns the URL with the host name “raw” to
support IDN names to appear as-is. IDN host names are typically using non-ASCII bytes
that otherwise are percent-encoded.

Note that even when not asking for URL encoding, the % (byte 37) is URL encoded in
host names to make sure the hostname remains valid.

CURLU_URLDECODE

Tells curl_url_get() to URL decode the contents before returning it. It does attempt
to decode the scheme, the port number or the full URL. The query component also gets
plus-to-space conversion as a bonus when this bit is set. Note that this URL decoding
is charset unaware and you get a zero terminated string back with data that could be

427



428 FLAGS

intended for a particular encoding. If there are any byte values lower than 32 in the
decoded string, the get operation instead returns error.

CURLU_PUNYCODE

If set and CURLU_URLENCODE is not set, and asked to retrieve the CURLUPART_HOST or
CURLUPART_URL parts, libcurl returns the hostname in its punycode version if it contains
any non-ASCII octets (and is an IDN name). If libcurl is built without IDN capabilities,
using this bit makes curl_url_get() return CURLUE_LACKS_IDN if the hostname contains
anything outside the ASCII range.



Get URL parts

The CURLU handle stores the individual parts of a URL and the application can extract
those pieces individually from the handle at any time. If they are set.

The second argument to curl_url_get() specifies which part you want extracted. They
are all extracted as null-terminated char * data, so you pass a pointer to such a variable.

char *host;
rc = curl_url_get(h, CURLUPART_HOST, &host, 0);

char *scheme;
rc = curl_url_get(h, CURLUPART_SCHEME, &scheme, 0);

char *user;
rc = curl_url_get(h, CURLUPART_USER, &user, 0);

char *password;
rc = curl_url_get(h, CURLUPART_PASSWORD, &password, 0);

char *port;
rc = curl_url_get(h, CURLUPART_PORT, &port, 0);

char *path;
rc = curl_url_get(h, CURLUPART_PATH, &path, 0);

char *query;
rc = curl_url_get(h, CURLUPART_QUERY, &query, 0);

char *fragment;
rc = curl_url_get(h, CURLUPART_FRAGMENT, &fragment, 0);

char *zoneid;
rc = curl_url_get(h, CURLUPART_ZONEID, &zoneid, 0);

Remember to free the returned string with curl_free when you are done with it!

Extracted parts are not URL decoded unless the user asks for it with the CURLU_URLDECODE
flag.

429



430 GET URL PARTS

URL parts
The different parts are named from their roles in the URL. Imagine a URL that looks like
this:

http://joe:7Hbz@example.com:8080/images?id=5445#footer

When this URL is parsed by curl, it stores the different components like this:

text part
http CURLUPART_SCHEME
joe CURLUPART_USER
7Hbz CURLUPART_PASSWORD
example.com CURLUPART_HOST
8080 CURLUPART_PORT
/images CURLUPART_PATH
id=5445 CURLUPART_QUERY
footer CURLUPART_FRAGMENT

Zone ID
The one thing that might stick out a little is the Zone id. It is an extra qualifier that can
be used for IPv6 numerical addresses, and only for such addresses. It is used like this,
where it is set to eth0:

http://[2a04:4e42:e00::347%25eth0]/

For this URL, curl extracts:

text part
http CURLUPART_SCHEME
2a04:4e42:e00::347 CURLUPART_HOST
eth0 CURLUPART_ZONEID
/ CURLUPART_PATH

Asking for any other component returns non-zero as they are missing.



Set URL parts

The API allows the application to set individual parts of a URL held in the CURLU handle,
either after having parsed a full URL or instead of parsing such.

rc = curl_url_set(urlp, CURLUPART_HOST, "www.example.com", 0);
rc = curl_url_set(urlp, CURLUPART_SCHEME, "https", 0);
rc = curl_url_set(urlp, CURLUPART_USER, "john", 0);
rc = curl_url_set(urlp, CURLUPART_PASSWORD, "doe", 0);
rc = curl_url_set(urlp, CURLUPART_PORT, "443", 0);
rc = curl_url_set(urlp, CURLUPART_PATH, "/index.html", 0);
rc = curl_url_set(urlp, CURLUPART_QUERY, "name=john", 0);
rc = curl_url_set(urlp, CURLUPART_FRAGMENT, "anchor", 0);
rc = curl_url_set(urlp, CURLUPART_ZONEID, "25", 0);

The API always expects a null-terminated char * string in the third argument, or NULL
to clear the field. Note that the port number is also provided as a string this way.

Set parts are not URL encoded unless the user asks for it with the CURLU_URLENCODE flag
in the forth argument.

Update parts
By setting an individual part, you can for example first set a full URL, then update a
single component of that URL and then extract the updated version of that URL.

For example, let’s say we have this URL

const char *url="http://joe:7Hbz@example.com:8080/images?id=5445#footer";

and we want change the host in that URL to instead become example.net, it could be
done like this:

CURLU *h = curl_url();
rc = curl_url_set(h, CURLUPART_URL, url, 0);

Then change the hostname part:

rc = curl_url_set(h, CURLUPART_HOST, "example.net", 0);

and this then now holds this URL:

http://joe:7Hbz@example.net:8080/images?id=5445#footer

If you then continue and change the path part to /foo like this:

rc = curl_url_set(h, CURLUPART_PATH, "/foo", 0);

431



432 SET URL PARTS

and the URL handle now holds this URL:

http://joe:7Hbz@example.net:8080/foo?id=5445#footer

etc. . .



Append to the query

An application can append a string to the right end of the existing query part with the
CURLU_APPENDQUERY flag.

Consider a handle that holds the URL https://example.com/?shoes=2. An application
can then add the string hat=1 to the query part like this:

rc = curl_url_set(urlp, CURLUPART_QUERY, "hat=1", CURLU_APPENDQUERY);

It even notices the lack of an ampersand (&) separator so it injects one too, and the
handle’s full URL would then equal https://example.com/?shoes=2&hat=1.

The appended string can of course also get URL encoded on add, and if asked, the encoding
skips the = character. For example, append candy=M&M to what we already have, and URL
encode it to deal with the ampersand in the data:

rc = curl_url_set(urlp, CURLUPART_QUERY, "candy=M&M",
CURLU_APPENDQUERY | CURLU_URLENCODE);

Now the URL looks like https://example.com/?shoes=2&hat=1&candy=M%26M.

433



CURLOPT_CURLU

As a convenience to applications, they can pass in an already parsed URL to libcurl to
work with, as an alternative to CURLOPT_URL.

You pass in a CURLU handle instead of a URL string with the CURLOPT_CURLU option.

Example:

CURLU *h = curl_url();
rc = curl_url_set(h, CURLUPART_URL, "https://example.com/", 0);

CURL *easy = curl_easy_init();
curl_easy_setopt(easy, CURLOPT_CURLU, h);

434



WebSocket

WebSocket is a transfer protocol done on top of HTTP that offers a general purpose
bidirectional byte-stream. The protocol was created for more than just plain uploads and
downloads and is more similar to something like TCP over HTTP.

A WebSocket client application sets up a connection with an HTTP request that upgrades
into WebSocket - and once upgraded, the involved parties speak WebSocket over that
connection until it is done and the connection is closed.

• Support
• URLs
• Concept
• Options
• Read
• Meta
• Write

435



Support

WebSocket is an EXPERIMENTAL feature present in libcurl 7.86.0 and later. Since
it is experimental, you need to explicitly enable it in the build for it to be present and
available.

To figure out if your libcurl installation supports WebSocket, you can call
curl_version_info() and check the ->protocols fields in the returned struct.
It should contain ws for it to be present, and probably also wss.

436



URLs

A client starts a WebSocket communication with libcurl by using a URL with the scheme
ws or wss. Like in wss://websocket.example.com/traffic-lights.

The wss variant is for using a TLS security connection, while the ws one is done over
insecure clear text.

437



Concept

A libcurl application can do WebSocket using one of these two different approaches below.

1. The callback approach
It can decide to use the regular write callback to receive incoming data, and respond to
that data in or outside of the callback with curl_ws_send. Thereby treating the entire
session as a form of download from the server.

Within the write callback, an application can call curl_ws_meta() to retrieve information
about the incoming WebSocket data.

2. The connect-only approach
The other way to do it, if using the write callback is not suitable, is to set
CURLOPT_CONNECT_ONLY to the value 2L and let libcurl do a transfer that only
sets up the connection to the server, does the WebSocket upgrade and then is considered
complete. After that connect-only transfer, the application can use curl_ws_recv() and
curl_ws_send() to receive and send WebSocket data over the connection.

Upgrade or die
Doing a transfer with a ws:// or wss:// URL implies that libcurl makes a successful
upgrade to the WebSocket protocol or an error is returned. An HTTP 200 response code
which for example is considered fine in a normal HTTP transfer is therefor considered an
error when asking for a WebSocket transfer.

Automatic PONG

If not using raw mode, libcurl automatically responds with the appropriate PONG response
for incoming PING frames and does not expose them in the API.

438



Options

There is a dedicated setopt option for the application to control a WebSocket communica-
tion: CURLOPT_WS_OPTIONS.

This option sets a bitmask of flags to libcurl, but at the moment, there is only a single bit
used.

Raw mode
By setting the CURLWS_RAW_MODE bit in the bitmask, libcurl delivers all WebSocket traffic
raw to the write callback instead of parsing the WebSocket traffic itself. This raw mode is
intended for applications that maybe implemented WebSocket handling already and want
to just move over to use libcurl for the transfer and maintain its own WebSocket logic.

In raw mode, libcurl also does not handle any PING traffic automatically.

439



Read

An application receives and reads incoming WebSocket traffic using one of these two
methods:

Write callback
When the CURLOPT_CONNECT_ONLY option is not set, WebSocket data is delivered to the
write callback.

In the default frame mode (as opposed to raw mode), libcurl delivers parts of WebSocket
fragments to the callback as data arrives. The application can then call curl_ws_meta()
to get information about the specific frame that was passed to the callback.

libcurl can deliver full fragments or partial ones, depending on what comes over the wire
when. Each WebSocket fragment can be up to 63 bit in size.

curl_ws_recv

If the connect-only option was set, the transfer ends after the WebSocket has been setup
to the remote host and from that point the application needs to call curl_ws_recv() to
read WebSocket data and curl_ws_send() to send it.

The curl_ws_recv function has this prototype:

CURLcode curl_ws_recv(CURL *curl, void *buffer, size_t buflen,
size_t *recv, struct curl_ws_frame **meta);

curl - the handle to the transfer

buffer - pointer to a buffer to receive the WebSocket data in

buflen - the size in bytes of the buffer

recv - the size in bytes of the data stored in the **buffer* on return

meta - gets a pointer to a struct with information about the received frame.

440



Meta

curl_ws_recv() and curl_ws_meta() both return a pointer to a curl_ws_frame struct,
which provides information about the incoming WebSocket data. A WebSocket “frame” in
this case is a part of a WebSocket fragment. It can be a whole fragment, but it might
only be a piece of it. The curl_ws_frame contains information about the frame to tell
you the details.

struct curl_ws_frame {
int age; /* zero */
int flags; /* See the CURLWS_* defines */
curl_off_t offset; /* the offset of this data into the frame */
curl_off_t bytesleft; /* number of pending bytes left of the payload */

};

age

This is just a number that identifies the age of this struct. It is always 0 now, but might
increase in a future and then the struct might grow.

flags

The ‘flags’ field is a bitmask describing details of data.

CURLWS_TEXT

The buffer contains text data. Note that this makes a difference to WebSocket but libcurl
itself does make any verification of the content or precautions that you actually receive
valid UTF-8 content.

CURLWS_BINARY

This is binary data.

CURLWS_FINAL

This is the final fragment of the message, if this is not set, it implies that there is another
fragment coming as part of the same message.

441



442 META

CURLWS_CLOSE

This transfer is now closed.

CURLWS_PING

This is an incoming ping message, that expects a pong response.

offset

When the data delivered is just a part of a larger fragment, this identifies the offset in
number of bytes into the larger fragment where this piece belongs.

bytesleft

Number of outstanding payload bytes after this frame, that is left to complete this fragment.

The maximum size of a WebSocket fragment is 63 bits.



Write

An application can receive WebSocket data two different ways, but there is only one way
for it to send data over the connection: the curl_ws_send() function.

curl_ws_send()

CURLcode curl_ws_send(CURL *curl, const void *buffer, size_t buflen,
size_t *sent, curl_off_t fragsize,
unsigned int sendflags);

curl - transfer handle

buffer - pointer to the frame data to send

buflen - length of the data (in bytes) in buffer

fragsize - the total size of the whole fragment, used when sending only a part of a larger
fragment.

sent - number of bytes that were sent

flags - bitmask describing the data. See bit descriptions below.

Full fragment vs partial
To send a complete WebSocket fragment, set fragsize to zero and provide data for all
other arguments.

To send a fragment in smaller pieces: send the first part with fragsize set to the total
fragment size. You must know and provide the size of the entire fragment before you can
send it. In subsequent calls to curl_ws_send() you send the next pieces of the fragment
with fragsize set to zero but with the CURLWS_OFFSET bit sets in the flags argument.
Repeat until all pieces have been sent that constitute the whole fragment.

Flags

CURLWS_TEXT

The buffer contains text data. Note that this makes a difference to WebSocket but libcurl
itself does not perform any verification of the content or make any precautions that you
actually send valid UTF-8 content.

443



444 WRITE

CURLWS_BINARY

This is binary data.

CURLWS_CONT

This is not the final fragment of the message, which implies that there is another fragment
coming as part of the same message where this bit is not set.

CURLWS_CLOSE

Close this transfer.

CURLWS_PING

This as a ping.

CURLWS_PONG

This as a pong.

CURLWS_OFFSET

The provided data is only a partial fragment and there is more data coming in a following
call to curl_ws_send(). When sending only a piece of the fragment like this, the fragsize
must be provided with the total expected frame size in the first call and it needs to be
zero in subsequent calls.

When CURLWS_OFFSET is set, no other flag bits should be set as this is a continuation of a
previous send and the bits describing the fragments were set then.



Headers API

libcurl offers an API for iterating over all received HTTP headers and for extracting the
contents from specific ones.

When returning header content, libcurl trims leading and trailing whitespace but does not
modify or change content in any other way.

This API was made official and is provided for real starting in libcurl 7.84.0.

Header origins
HTTP headers are key value pairs that are sent from the server in a few different origins
during a transfer. libcurl collects all headers and provides easy access to them for
applications.

HTTP headers can arrive as

1. CURLH_HEADER - before regular response content.
2. CURLH_TRAILER - fields arriving after the response content
3. CURLH_CONNECT - response headers in the proxy CONNECT request that might

have been done before the actual server request
4. CURLH_1XX - headers in the potential 1xx HTTP responses that might have

preceded the following >= 2xx response code.
5. CURLH_PSEUDO - HTTP/2 and HTTP/3 level headers that start with colon

(:)

Request number
A single HTTP transfer done with libcurl might consist of a series of HTTP requests
and the request argument to the header API functions lets you specify which particular
individual request you want the headers from. 0 being the first request and then the
number increases for further redirects or when multi-state authentication is used. Passing
in -1 is a shortcut to the last request in the series, independently of the actual amount of
requests used.

Header folding
HTTP/1 headers supports a deprecated format called folding, which means that there is a
continuation line after a header, making the line folded.

445



446 HEADERS API

The headers API supports folded headers and returns such contents unfolded - where the
different parts are separated by a single whitespace character.

When
The two header API function calls are perfectly possible to call at any time during a
transfer, both from inside and outside of callbacks. It is however important to remember
that the API only returns information about the state of the headers at the exact moment
it is called, which might not be the final status if you call it while the transfer is still in
progress.

• Header struct
• Get a header
• Iterate of headers



Header struct

The header struct pointer the header API functions return, points to memory associated
with the easy handle and subsequent calls to the functions clobber that struct. Applications
need to copy the data if they want to keep it around. The memory used for the struct
gets freed with calling curl_easy_cleanup().

The struct
struct curl_header {

char *name;
char *value;
size_t amount;
size_t index;
unsigned int origin;
void *anchor;

};

name is the name of header. It uses the casing used for the first instance of the header
with this name.

value is the content. It comes exactly as delivered over the network but with leading and
trailing whitespace and newlines stripped off. The data is always null-terminated.

amount is the number of headers using this name that exist, within the asked origin and
request context.

index is the zero based entry number of this particular header name, which in case this
header was used more than once in the requested scope can be larger than 0 but is always
less than amount.

origin has (exactly) one of the origin bits set, indicating where from the header originates.

anchor is a private handle used by libcurl internals. Do not modify. Do not assume
anything about it.

447



Get a header

CURLHcode curl_easy_header(CURL *easy,
const char *name,
size_t index,
unsigned int origin,
int request,
struct curl_header **hout);

This function returns information about a field with a specific name, and you ask the
function to search for it in one or more origins.

The index argument is when you want to ask for the nth occurrence of a header; when
there are more than one available. Setting index to 0 returns the first instance - in many
cases that is the only one.

The request argument tells libcurl from which request you want headers from.

An application needs to pass in a pointer to a struct curl_header * in the last argument,
as a pointer is returned there when an error is not returned. See Header struct for details
on the out result of a successful call.

If the given name does not match any received header in the given origin, the func-
tion returns CURLHE_MISSING or if no headers at all have been received yet it returns
CURLHE_NOHEADERS.

448



Iterate over headers

struct curl_header *curl_easy_nextheader(CURL *easy,
unsigned int origin,
int request,
struct curl_header *previous);

This function lets the application iterate over all available headers from within the given
origins that arrived in the request.

The request argument tells libcurl from which request you want headers from.

If previous is set to NULL, this function returns a pointer to the first header. The
application can then use that pointer as an argument to the next call to iterate over all
available headers within the same origin and request context.

When this function returns NULL, there are no more headers within the context.

See Header struct for details on the curl_header struct that function this returns a
pointer to.

449



libcurl examples

The native API for libcurl is in C so this chapter is focused on examples written in C. But
since many language bindings for libcurl are thin, they usually expose more or less the
same functions and thus they can still be interesting and educational for users of other
languages, too.

• Get a simple HTTP page
• Get a page in memory
• Submit a login form over HTTP
• Get an FTP directory listing
• Non-blocking HTTP form-post

450



Get a simple HTTP page

This example just fetches the HTML from a given URL and sends it to stdout. Possibly
the simplest libcurl program you can write.

By replacing the URL this is able to get contents over other supported protocols as well.

Getting the output sent to stdout is a default behavior and usually not what you actually
want. Most applications instead install a write callback to have receive the data that
arrives.

#include <stdio.h>
#include <curl/curl.h>

int main(void)
{

CURL *curl;
CURLcode res;

curl = curl_easy_init();
if(curl) {

curl_easy_setopt(curl, CURLOPT_URL, "http://example.com/");

/* Perform the request, ’res’ holds the return code */
res = curl_easy_perform(curl);
/* Check for errors */
if(res != CURLE_OK)

fprintf(stderr, "curl_easy_perform() failed: %s\n",
curl_easy_strerror(res));

/* always cleanup */
curl_easy_cleanup(curl);

}
return 0;

}

451



Get a response into memory

This example is a variation of the former that instead of sending the received data to
stdout (which often is not what you want), this example instead stores the incoming data
in a memory buffer that is enlarged as the incoming data grows.

It accomplishes this by using a write callback to receive the data.

This example uses a fixed URL string with a set URL scheme, but you can of course
change this to use any other supported protocol and then get a resource from that instead.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <curl/curl.h>

struct MemoryStruct {
char *memory;
size_t size;

};

static size_t
mem_cb(void *contents, size_t size, size_t nmemb, void *userp)
{

size_t realsize = size * nmemb;
struct MemoryStruct *mem = (struct MemoryStruct *)userp;

mem->memory = realloc(mem->memory, mem->size + realsize + 1);
if(mem->memory == NULL) {

/* out of memory */
printf("not enough memory (realloc returned NULL)\n");
return 0;

}

memcpy(&(mem->memory[mem->size]), contents, realsize);
mem->size += realsize;
mem->memory[mem->size] = 0;

return realsize;
}

452



453

int main(void)
{

CURL *curl_handle;
CURLcode res;

struct MemoryStruct chunk;

chunk.memory = malloc(1); /* grown as needed by the realloc above */
chunk.size = 0; /* no data at this point */

curl_global_init(CURL_GLOBAL_ALL);

/* init the curl session */
curl_handle = curl_easy_init();

/* specify URL to get */
curl_easy_setopt(curl_handle, CURLOPT_URL, "https://www.example.com/");

/* send all data to this function */
curl_easy_setopt(curl_handle, CURLOPT_WRITEFUNCTION, mem_cb);

/* we pass our ’chunk’ struct to the callback function */
curl_easy_setopt(curl_handle, CURLOPT_WRITEDATA, (void *)&chunk);

/* some servers do not like requests that are made without a user-agent
field, so we provide one */

curl_easy_setopt(curl_handle, CURLOPT_USERAGENT, "libcurl-agent/1.0");

/* get it! */
res = curl_easy_perform(curl_handle);

/* check for errors */
if(res != CURLE_OK) {

fprintf(stderr, "curl_easy_perform() failed: %s\n",
curl_easy_strerror(res));

}
else {

/*
* Now, our chunk.memory points to a memory block that is chunk.size
* bytes big and contains the remote file.
*
* Do something nice with it
*/

printf("%lu bytes retrieved\n", (long)chunk.size);
}

/* cleanup curl stuff */
curl_easy_cleanup(curl_handle);



454 GET A RESPONSE INTO MEMORY

free(chunk.memory);

/* we are done with libcurl, so clean it up */
curl_global_cleanup();

return 0;
}



Submit a login form over HTTP

A login submission over HTTP is usually a matter of figuring out exactly what data to
submit in a POST and to which target URL to send it.

Once logged in, the target URL can be fetched if the proper cookies are used. As many
login-systems work with HTTP redirects, we ask libcurl to follow such if they arrive.

Some login forms makes it more complicated and require that you got cookies from the
page showing the login form etc, so if you need that you may want to extend this code a
little bit.

By passing in a non-existing cookie file, this example enables the cookie parser so incoming
cookies are stored when the response from the login response arrives and then the subsequent
request for the resource uses those and prove to the server that we are in fact correctly
logged in.

#include <stdio.h>
#include <string.h>
#include <curl/curl.h>

int main(void)
{

CURL *curl;
CURLcode res;

static const char *postthis = "user=daniel&password=monkey123";

curl = curl_easy_init();
if(curl) {

curl_easy_setopt(curl, CURLOPT_URL, "https://example.com/login.cgi");
curl_easy_setopt(curl, CURLOPT_POSTFIELDS, postthis);
curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L); /* redirects */
curl_easy_setopt(curl, CURLOPT_COOKIEFILE, ""); /* no file */
res = curl_easy_perform(curl);
/* Check for errors */
if(res != CURLE_OK)

fprintf(stderr, "curl_easy_perform() failed: %s\n",
curl_easy_strerror(res));

else {
/*
* After the login POST, we have received the new cookies. Switch
* over to a GET and ask for the login-protected URL.

455



456 SUBMIT A LOGIN FORM OVER HTTP

*/
curl_easy_setopt(curl, CURLOPT_URL, "https://example.com/file");
curl_easy_setopt(curl, CURLOPT_HTTPGET, 1L); /* no more POST */
res = curl_easy_perform(curl);
/* Check for errors */
if(res != CURLE_OK)

fprintf(stderr, "second curl_easy_perform() failed: %s\n",
curl_easy_strerror(res));

}
/* always cleanup */
curl_easy_cleanup(curl);

}
return 0;

}



Get an FTP directory listing

This example just fetches the FTP directory output from the given URL and sends it to
stdout. The trailing slash in the URL is what makes libcurl treat it as a directory.

#include <curl/curl.h>

int main(void)
{

CURL *curl;
CURLcode res;

curl_global_init(CURL_GLOBAL_DEFAULT);

curl = curl_easy_init();
if(curl) {

/*
* Make the URL end with a trailing slash
*/
curl_easy_setopt(curl, CURLOPT_URL, "ftp://ftp.example.com/");

res = curl_easy_perform(curl);

/* always cleanup */
curl_easy_cleanup(curl);

if(CURLE_OK != res) {
/* we failed */
fprintf(stderr, "curl told us %d\n", res);

}
}

curl_global_cleanup();

return 0;
}

457



Non-blocking HTTP form-post

This examples makes a multipart form-post using the multi interface.

#include <stdio.h>
#include <string.h>
#include <sys/time.h>

#include <curl/curl.h>

int main(void)
{

CURL *curl;

CURLM *multi_handle;
int still_running = 0;

curl_mime *form = NULL;
curl_mimepart *field = NULL;
struct curl_slist *headerlist = NULL;
static const char buf[] = "Expect:";

curl = curl_easy_init();
multi_handle = curl_multi_init();

if(curl && multi_handle) {
/* Create the form */
form = curl_mime_init(curl);

/* Fill in the file upload field */
field = curl_mime_addpart(form);
curl_mime_name(field, "sendfile");
curl_mime_filedata(field, "multi-post.c");

/* Fill in the filename field */
field = curl_mime_addpart(form);
curl_mime_name(field, "filename");
curl_mime_data(field, "multi-post.c", CURL_ZERO_TERMINATED);

/* Fill in the submit field too, even if this is rarely needed */
field = curl_mime_addpart(form);

458



459

curl_mime_name(field, "submit");
curl_mime_data(field, "send", CURL_ZERO_TERMINATED);

/* initialize custom header list (stating that Expect: 100-continue is
not wanted */

headerlist = curl_slist_append(headerlist, buf);

/* what URL that receives this POST */
curl_easy_setopt(curl, CURLOPT_URL, "https://example.com/upload.cgi");
curl_easy_setopt(curl, CURLOPT_VERBOSE, 1L);

curl_easy_setopt(curl, CURLOPT_HTTPHEADER, headerlist);
curl_easy_setopt(curl, CURLOPT_MIMEPOST, form);

curl_multi_add_handle(multi_handle, curl);

do {
CURLMcode mc = curl_multi_perform(multi_handle, &still_running);

if(still_running)
/* wait for activity, timeout or "nothing" */
mc = curl_multi_poll(multi_handle, NULL, 0, 1000, NULL);

if(mc)
break;

} while(still_running);

curl_multi_cleanup(multi_handle);

/* always cleanup */
curl_easy_cleanup(curl);

/* then cleanup the form */
curl_mime_free(form);

/* free slist */
curl_slist_free_all(headerlist);

}
return 0;

}



libcurl bindings

Creative people have written bindings or interfaces for various environments and program-
ming languages. Using one of these allows you to take advantage of the power of curl from
within your favorite language or system. This is a list of all known interfaces, as of the
time of this writing.

The bindings listed below are not part of the curl/libcurl distribution archives. They must
be downloaded and installed separately.

Language Site Author(s)
Script Basic https://scriptbasic.com/ Peter Verhas
C++ https://www.curlpp.org/ Jean-Philippe,

Barrette-LaPierre
C++ https://github.com/

JosephP91/curlcpp
Giuseppe Persico

C++ https:
//github.com/libcpr/cpr

Huu Nguyen

Ch/C++ https:
//chcurl.sourceforge.io/

Stephen Nestinger,
Jonathan Rogado

Cocoa (BBHTTP) https://github.com/
biasedbit/BBHTTP

Bruno de Carvalho

Cocoa (CURLHandle) https://github.com/
karelia/curlhandle/

Dan Wood

Clojure https://github.com/
lsevero/clj-curl

Lucas Severo

D https://dlang.org/library/
std/net/curl.html

Kenneth Bogert

Delphi https://github.com/
Mercury13/curl4delphi

Mikhail Merkuryev

Dylan https://opendylan.org/ Chris Double
Eiffel https://iron.eiffel.com/

repository/20.11/package/
ABEF6975-37AC-45FD-
9C67-52D10BA0669B

Eiffel Software

Erlang https://github.com/
puzza007/katipo

Paul Oliver

Falcon http://www.falconpl.org/
project_docs/curl/

Falcon

Gambas https:
//gambas.sourceforge.io/

Gambas

460

https://scriptbasic.com/
https://www.curlpp.org/
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/libcpr/cpr
https://github.com/libcpr/cpr
https://chcurl.sourceforge.io/
https://chcurl.sourceforge.io/
https://github.com/biasedbit/BBHTTP
https://github.com/biasedbit/BBHTTP
https://github.com/karelia/curlhandle/
https://github.com/karelia/curlhandle/
https://github.com/lsevero/clj-curl
https://github.com/lsevero/clj-curl
https://dlang.org/library/std/net/curl.html
https://dlang.org/library/std/net/curl.html
https://github.com/Mercury13/curl4delphi
https://github.com/Mercury13/curl4delphi
https://opendylan.org/
https://iron.eiffel.com/repository/20.11/package/ABEF6975-37AC-45FD-9C67-52D10BA0669B
https://iron.eiffel.com/repository/20.11/package/ABEF6975-37AC-45FD-9C67-52D10BA0669B
https://iron.eiffel.com/repository/20.11/package/ABEF6975-37AC-45FD-9C67-52D10BA0669B
https://iron.eiffel.com/repository/20.11/package/ABEF6975-37AC-45FD-9C67-52D10BA0669B
https://github.com/puzza007/katipo
https://github.com/puzza007/katipo
http://www.falconpl.org/project_docs/curl/
http://www.falconpl.org/project_docs/curl/
https://gambas.sourceforge.io/
https://gambas.sourceforge.io/


461

Language Site Author(s)
glib/GTK+ https://web.archive.org/

web/20230204213618/
atterer.org/glibcurl

Richard Atterer

Go https://github.com/
andelf/go-curl

ShuYu Wang

Guile https://web.archive.org/
web/20210417020142/
www.lonelycactus.com/
guile-curl.html

Michael L. Gran

Harbour https://github.com/
vszakats/harbour-
core/tree/master/contrib/
hbcurl

Viktor Szakáts

Haskell https://hackage.haskell.
org/package/curl

Galois, Inc

Java https://github.com/
pjlegato/curl-java

Paul Legato

Julia https://github.com/
JuliaWeb/LibCURL.jl

Amit Murthy

Lisp https://common-
lisp.net/project/cl-curl/

Liam Healy

Lua-cURL https://github.com/Lua-
cURL/Lua-cURLv3

Jürgen Hötzel, Alexey
Melnichuk

.NET https://github.com/
masroore/CurlSharp

Masroor Ehsan Choudhury,
Jeffrey Phillips

Nim https://nimble.directory/
pkg/libcurl

Andreas Rumpf

NodeJS https://github.com/
JCMais/node-libcurl

Jonathan Cardoso
Machado

OCaml https:
//ygrek.org/p/ocurl/

Lars Nilsson

Pascal/Delphi/Kylix https://curlpas.
sourceforge.io/curlpas/

Jeffrey Pohlmeyer.

Perl https://github.com/
szbalint/WWW--Curl

Cris Bailiff and Bálint
Szilakszi

Perl https://metacpan.org/
pod/Net::Curl

Przemyslaw Iskra

Perl6 https://github.com/
azawawi/perl6-net-curl

Ahmad M. Zawawi

PHP https://php.net/curl Sterling Hughes
PostgreSQL https://github.com/

pramsey/pgsql-http
Paul Ramsey

PostgreSQL https://github.com/
RekGRpth/pg_curl

RekGRpth

PureBasic https:
//www.purebasic.com/
documentation/http/

PureBasic

https://web.archive.org/web/20230204213618/atterer.org/glibcurl
https://web.archive.org/web/20230204213618/atterer.org/glibcurl
https://web.archive.org/web/20230204213618/atterer.org/glibcurl
https://github.com/andelf/go-curl
https://github.com/andelf/go-curl
https://web.archive.org/web/20210417020142/www.lonelycactus.com/guile-curl.html
https://web.archive.org/web/20210417020142/www.lonelycactus.com/guile-curl.html
https://web.archive.org/web/20210417020142/www.lonelycactus.com/guile-curl.html
https://web.archive.org/web/20210417020142/www.lonelycactus.com/guile-curl.html
https://github.com/vszakats/harbour-core/tree/master/contrib/hbcurl
https://github.com/vszakats/harbour-core/tree/master/contrib/hbcurl
https://github.com/vszakats/harbour-core/tree/master/contrib/hbcurl
https://github.com/vszakats/harbour-core/tree/master/contrib/hbcurl
https://hackage.haskell.org/package/curl
https://hackage.haskell.org/package/curl
https://github.com/pjlegato/curl-java
https://github.com/pjlegato/curl-java
https://github.com/JuliaWeb/LibCURL.jl
https://github.com/JuliaWeb/LibCURL.jl
https://common-lisp.net/project/cl-curl/
https://common-lisp.net/project/cl-curl/
https://github.com/Lua-cURL/Lua-cURLv3
https://github.com/Lua-cURL/Lua-cURLv3
https://github.com/masroore/CurlSharp
https://github.com/masroore/CurlSharp
https://nimble.directory/pkg/libcurl
https://nimble.directory/pkg/libcurl
https://github.com/JCMais/node-libcurl
https://github.com/JCMais/node-libcurl
https://ygrek.org/p/ocurl/
https://ygrek.org/p/ocurl/
https://curlpas.sourceforge.io/curlpas/
https://curlpas.sourceforge.io/curlpas/
https://github.com/szbalint/WWW--Curl
https://github.com/szbalint/WWW--Curl
https://metacpan.org/pod/Net::Curl
https://metacpan.org/pod/Net::Curl
https://github.com/azawawi/perl6-net-curl
https://github.com/azawawi/perl6-net-curl
https://php.net/curl
https://github.com/pramsey/pgsql-http
https://github.com/pramsey/pgsql-http
https://github.com/RekGRpth/pg_curl
https://github.com/RekGRpth/pg_curl
https://www.purebasic.com/documentation/http/
https://www.purebasic.com/documentation/http/
https://www.purebasic.com/documentation/http/


462 LIBCURL BINDINGS

Language Site Author(s)
Python (PycURL) https://github.com/

pycurl/pycurl
Kjetil Jacobsen

R https://cran.r-
project.org/package=curl

Jeroen Ooms, Hadley
Wickham, RStudio

Rexx https:
//rexxcurl.sourceforge.io/

Mark Hessling

Ring https://ring-
lang.sourceforge.io/doc1.
3/libcurl.html

Mahmoud Fayed

RPG https:
//github.com/curl/curl/
blob/master/packages/
OS400/README.OS400

Patrick Monnerat

Ruby (curb) https:
//github.com/taf2/curb

Ross Bamford

Ruby (ruby-curl-multi) https://github.com/kball/
curl_multi.rb

Kristjan Petursson and
Keith Rarick

Rust (curl-rust) https://github.com/
alexcrichton/curl-rust

Carl Lerche

Scheme Bigloo https://www.metapaper.
net/lisovsky/web/curl/

Kirill Lisovsky

Scilab https://help.scilab.org/
docs/current/fr_FR/
getURL.html

Sylvestre Ledru

S-Lang https://www.jedsoft.org/
slang/modules/curl.html

John E Davis

Smalltalk https:
//www.squeaksource.com/
CurlPlugin/

Danil Osipchuk

SP-Forth https://sourceforge.net/p/
spf/spf/ci/master/tree/
devel/~ac/lib/lin/curl/

Andrey Cherezov

Tcl http://mirror.yellow5.
com/tclcurl/

Andrés García

Visual Basic https://sourceforge.net/
projects/libcurl-vb/

Jeffrey Phillips

wxWidgets https:
//wxcode.sourceforge.io/
components/wxcurl/

Casey O’Donnell

Xojo https://github.com/
charonn0/RB-libcURL

Andrew Lambert

https://github.com/pycurl/pycurl
https://github.com/pycurl/pycurl
https://cran.r-project.org/package=curl
https://cran.r-project.org/package=curl
https://rexxcurl.sourceforge.io/
https://rexxcurl.sourceforge.io/
https://ring-lang.sourceforge.io/doc1.3/libcurl.html
https://ring-lang.sourceforge.io/doc1.3/libcurl.html
https://ring-lang.sourceforge.io/doc1.3/libcurl.html
https://github.com/curl/curl/blob/master/packages/OS400/README.OS400
https://github.com/curl/curl/blob/master/packages/OS400/README.OS400
https://github.com/curl/curl/blob/master/packages/OS400/README.OS400
https://github.com/curl/curl/blob/master/packages/OS400/README.OS400
https://github.com/taf2/curb
https://github.com/taf2/curb
https://github.com/kball/curl_multi.rb
https://github.com/kball/curl_multi.rb
https://github.com/alexcrichton/curl-rust
https://github.com/alexcrichton/curl-rust
https://www.metapaper.net/lisovsky/web/curl/
https://www.metapaper.net/lisovsky/web/curl/
https://help.scilab.org/docs/current/fr_FR/getURL.html
https://help.scilab.org/docs/current/fr_FR/getURL.html
https://help.scilab.org/docs/current/fr_FR/getURL.html
https://www.jedsoft.org/slang/modules/curl.html
https://www.jedsoft.org/slang/modules/curl.html
https://www.squeaksource.com/CurlPlugin/
https://www.squeaksource.com/CurlPlugin/
https://www.squeaksource.com/CurlPlugin/
https://sourceforge.net/p/spf/spf/ci/master/tree/devel/~ac/lib/lin/curl/
https://sourceforge.net/p/spf/spf/ci/master/tree/devel/~ac/lib/lin/curl/
https://sourceforge.net/p/spf/spf/ci/master/tree/devel/~ac/lib/lin/curl/
http://mirror.yellow5.com/tclcurl/
http://mirror.yellow5.com/tclcurl/
https://sourceforge.net/projects/libcurl-vb/
https://sourceforge.net/projects/libcurl-vb/
https://wxcode.sourceforge.io/components/wxcurl/
https://wxcode.sourceforge.io/components/wxcurl/
https://wxcode.sourceforge.io/components/wxcurl/
https://github.com/charonn0/RB-libcURL
https://github.com/charonn0/RB-libcURL


libcurl internals

libcurl is never finished and is not just an off-the-shelf product. It is a living project that
is improved and modified on almost a daily basis. We depend on skilled and interested
hackers to fix bugs and to add features.

This chapter is meant to describe internal details to aid keen libcurl hackers to learn
some basic concepts on how libcurl works internally and thus possibly where to look for
problems or where to add things when you want to make the library do something new.

• Easy handles and connections
• Everything is multi
• State machines
• Protocol handler
• Backends
• Caches and state
• Timeouts
• Windows vs Unix
• Memory debugging
• Content Encoding
• Structs
• Resolving host names
• Tests

463



Easy handles and connections

When reading the source code there are some useful basics that are good to know and
keep in mind:

• ‘data’ is the variable name we use all over to refer to the easy handle (struct
Curl_easy) for the transfer being worked on. No other name should be used for this
and nothing else should use this name. The easy handle is the main object identifying
a transfer. A transfer typically uses a connection at some point and typically only
one at a time. There is a data->conn pointer that identifies the connection that
is currently used by this transfer. A single connection can be used over time and
even concurrently by several transfers (and thus easy handles) when multiplexed
connections are used.

• conn is the variable name we use all over the internals to refer to the current
connection the code works on (struct connectdata).

• result is the usual name we use for a CURLcode variable to hold the return values
from functions and if that return value is different than zero, it is an error and the
function should clean up and return (usually passing on the same error code to its
parent function).

464



Everything is multi

libcurl offers a few different APIs to do transfers; where the primary differences are the
synchronous easy interface versus the non-blocking multi interface. The multi interface
itself can then be further used either by using the event-driven socket interface or the
normal perform interface.

Internally however, everything is written for the event-driven interface. Everything needs
to be written in non-blocking fashion so that functions are never waiting for data in loop
or similar. Unless they are the surface functions that have that expressed functionality.

The function curl_easy_perform() which performs a single transfer synchronously, is
itself just a wrapper function that internally setups and uses the multi interface itself.

465



State machines

To facilitate non-blocking behavior all through, the curl source is full of state machines.
Work on as much data as there is and drive the state machine to where it can go based on
what’s available and allow the functions to continue from that point later on when more
data arrives that then might drive the state machine further.

There are such states in many different levels for a given transfer and the code for each
particular protocol may have its own set of state machines.

mstate
One of the primary states is the main transfer “mode” the easy handle holds, which says
if the current transfer is resolving, waiting for a resolve, connecting, waiting for a connect,
issuing a request, doing a transfer etc (see the CURLMstate enum in lib/multihandle.h).
Every transfer done with libcurl has an associated easy handle and every easy handle
exercises that state machine.

The image below shows all states and possible state transitions. See further explanation
below.

Figure 14: libcurl transfer state machine

466



MSTATE 467

All transfers start in INIT and they end in MSGSENT

yellow: the initial setting-up states

blue: resolving names and setting up the connection

green: initiating and setting up the transfer

white: the transfer

red: post-transfer

All states within the striped area have an associated connection.



Protocol handler

libcurl is a multi-protocol transfer library. The core of the code is a set of generic functions
that are used for transfers in general and mostly works the same for all protocols. The
main state machine described above for example is there and works for all protocols - even
though some protocols may not make use of all states for all transfers.

However, each different protocol libcurl speaks also has its unique particularities and
specialties. In order to not have the code littered with conditions in the style if the protocol
is XYZ, then do. . . , we instead have the concept of Curl_handler. Each supported protocol
defines one of those in lib/url.c there is an array of pointers to such handlers called
protocols[].

When a transfer is about to be done, libcurl parses the URL it is about to operate on
and among other things it figures out what protocol to use. Normally this can be done
by looking at the scheme part of the URL. For https://example.com that is https
and for imaps://example.com it is imaps. Using the provided scheme, libcurl sets the
conn->handler pointer to the handler struct for the protocol that handles this URL.

Figure 15: libcurl protocol handlers

The handler struct contains a set of function pointers that can be NULL or set to point to
a protocol specific function to do things necessary for that protocol to work for a transfer.

468



SETUP CONNECTION 469

Things that not all other protocols need. The handler struct also sets up the name of the
protocol and describes its feature set with a bitmask.

A libcurl transfer is built around a set of different actions and the handler can extend each
of them. Here are some example function pointers in this struct and how they are used:

Setup connection
If a connection cannot be reused for a transfer, it needs to setup a connection to the host
given in the URL and when it does, it can also call the protocol handler’s function for it.
Like this:

if(conn->handler->setup_connection)
result = conn->handler->setup_connection(data, conn);

Connect
After a connection has been established, this function gets called

if(conn->handler->connect_it)
result = conn->handler->connect_it(data, &done);

Do
Do is simply the action that issues a request for the particular resource the URL identifies.
All protocol has a do action so this function must be provided:

result = conn->handler->do_it(data, &done);

Done
When a transfer is completed, the done action is taken:

result = conn->handler->done(data, status, premature);

Disconnect
The connection is about to be taken down.

result = conn->handler->disconnect(data, conn, dead_connection);



Backends

A backend in curl is a build-time selectable alternative implementation.

When you build curl, you can select alternative implementations for several different things.
Different providers of the same feature set. You select which backend or backends (plural)
to use when you build curl.

• Backends are selectable and deselectable
• Often platform dependent
• Can differ in features
• Can differ in 3rd party licenses
• Can differ in maturity
• The internal APIs are never exposed externally

Different backends
In the libcurl source code, there are internal APIs for providing functionality. In these
different areas there are multiple different providers:

1. IDN
2. Name resolving
3. TLS
4. SSH
5. HTTP/1 and HTTP/2
6. HTTP/3
7. HTTP content encoding

Backends visualized
Applications (in the upper yellow cloud) access libcurl through the public API. The API
is fixed and stable.

Internally, the core of libcurl uses internal APIs to perform the different duties it needs
to do. Each of these internal APIs are powered by alternative implementations, in many
times powered by different third party libraries.

The image above shows the different third party libraries powering different internal APIs.
The purple boxes are one or more and the dark gray ones are “one of these”.

470



BACKENDS VISUALIZED 471

Figure 16: libcurl backends



Caches and state

When libcurl is used for Internet transfers, it stores data in caches and state storage in
order to do subsequent transfers faster and better.

The caches are kept associated with the CURL or CURLM handles, depending on which libcurl
API is used, easy or multi.

DNS cache
When libcurl resolves the IP addresses of a hostname it stores the result in its DNS cache
(with a default life-time of 60 seconds), so that subsequent lookups can use the cached
data immediately instead of doing the (potentially slow) resolve operation again. This
cache exists in memory only.

connection cache
Also known as the connection pool. This is where curl puts live connections after a
transfer is complete so that a subsequent transfer might be able to use an already existing
connection instead of having to set a new one up. When a connection is reused, curl avoids
name lookups, TLS handshakes and more. This cache exists in memory only.

TLS session-ID cache
When curl uses TLS, it saves the session-ID in a cache. When a subsequent transfer needs
to redo the TLS handshake with a host for which it has a cached session-ID, the handshake
can complete faster. This cache exists in memory only.

CA store cache
When curl creates a new connection and performs a TLS handshake, it needs to load and
parse a CA store to use for verifying the certificate presented by the remote server. The
CA store cache keeps the parsed CA store in memory for a period of time (default is 24
hours) so that subsequent handshakes are done much faster by avoiding having to re-parse
this potentially large data amount. This cache exists in memory only. Added in 7.87.0.

472



HSTS 473

HSTS
HSTS is HTTP Strict Transport Security. HTTPS servers can inform clients that they
want the client to connect to its hostname using only HTTPS going forward and not
HTTP, even when HTTP:// URLs are used. curl keeps this connection upgrade information
in memory and can be told to load it from and save it to disk as well.

Alt-Svc
Alt-Svc: is an HTTP response header that informs the client about alternative host
names, port numbers and protocol versions where the same service is also available. curl
keeps this alternative service information in memory and can be told to load it from and
save it to disk as well.

Cookies
Cookies are name value pairs sent from an HTTP server to the client, meant to be sent
back in subsequent requests that match the conditions. curl keeps all cookies in memory
and can be told to load them from and save them to disk as well.



Timeouts

All internals need to be written non-blocking and cannot just hang around and wait for
things to occur. At the same time, the multi interface allows users to call libcurl to perform
virtually at any time, even if no action has happened or a timeout has triggered.

Exposes just a single timeout to apps
In the external API libcurl provides a single timeout at a time, no matter how many
concurrent transfers and what options are set. An application can get the timeout value it
with curl_multi_timeout() or in a CURLMOPT_TIMERFUNCTION callback, depending on
what API it wants to use.

Internally, this is done like this:

• Every easy handle keeps an array of timeouts, in a sorted order. The closest
(next-timeout) in time is first in the list.

• All easy handles are put in a splay tree which is binary self-balancing search tree
that makes it fast to insert and remove nodes depending on their timeouts.

• As soon as any handle’s next-timeout changes, the splay tree is re-balanced.

Extracting the easy handles with expired timeouts is a quick operation.

Set a timeout
The internal function for setting a timeout is called Curl_expire(). It asks that libcurl
gets called again for this handle in a certain amount of milliseconds into the future. A
timeout is set with a specific ID, to make sure that it overrides previous values set for the
same timeout etc. The existing timeout IDs are limited and the set is hard-coded.

A timeout can be removed again with Curl_expire_clear(), which then removes that
timeout from the list of timeouts for the given easy handle.

Expired timeouts
Expiration of a timeout means that the application knows that it needs to call libcurl
again. When the socket_action API is used, it even knows to call libcurl again for a
specific given easy handle for which the timeout has expired.

There is no other special action or activity happening when a timeout expires than that
the perform function is called. Each state or internal function needs to know what times
or states to check for and act accordingly when called (again).

474



Windows vs Unix

There are a few differences in how to program curl the Unix way compared to the Windows
way. Perhaps the four most notable details are:

Different function names for socket operations
In curl, this is solved with defines and macros, so that the source looks the same in all
places except for the header file that defines them. The macros in use are sclose(),
sread() and swrite().

Init calls
Windows requires a couple of init calls for the socket stuff.

That is taken care of by the curl_global_init() call, but if other libs also do it etc there
might be reasons for applications to alter that behavior.

We require WinSock version 2.2 and load this version during global init.

File descriptors
File descriptors for network communication and file operations are not as easily inter-
changeable as in Unix.

We avoid this by not trying any funny tricks on file descriptors.

Stdout
When writing data to stdout, Windows makes end-of-lines the DOS way, thus destroying
binary data, although you do want that conversion if it is text coming through. . . (sigh)

We set stdout to binary under windows

Ifdefs
Inside the source code, We make an effort to avoid #ifdef [Your OS]. All conditionals that
deal with features should instead be in the format #ifdef HAVE_THAT_WEIRD_FUNCTION.
Since Windows cannot run configure scripts, we maintain a curl_config-win32.h file in

475



476 WINDOWS VS UNIX

the lib directory that is supposed to look exactly like a curl_config.h file would have
looked like on a Windows machine.

Generally speaking: curl is frequently compiled on several dozens of operating systems.
Do not walk on the edge.



Memory debugging

The file lib/memdebug.c contains debug-versions of a few functions. Functions such as
malloc(), free(), fopen(), fclose(), etc that somehow deal with resources that might
give us problems if we leak them. The functions in the memdebug system do nothing
fancy, they do their normal function and then log information about what they just did.
The logged data can then be analyzed after a complete session,

memanalyze.pl is the perl script present in tests/ that analyzes a log file generated by
the memory tracking system. It detects if resources are allocated but never freed and
other kinds of errors related to resource management.

Internally, the definition of the preprocessor symbol DEBUGBUILD restricts code which is
only compiled for debug enabled builds. The symbol CURLDEBUG is used to differentiate
code which is only used for memory tracking/debugging.

Use -DCURLDEBUG when compiling to enable memory debugging, this is also switched on
by running configure with --enable-curldebug. Use -DDEBUGBUILD when compiling to
enable a debug build or run configure with --enable-debug.

curl --version lists the Debug feature for debug enabled builds, and lists the
TrackMemory feature for curl debug memory tracking capable builds. These features
are independent and can be controlled when running the configure script. When
--enable-debug is given both features get enabled, unless some restriction prevents
memory tracking from being used.

Track Down Memory Leaks
. . . using the memory debug system. In general, we suggest using valgrind a the first
choice.

Single-threaded
Please note that this memory leak system is not adjusted to work in more than one thread.
If you want/need to use it in a multi-threaded app. Please adjust accordingly.

Build
Rebuild libcurl with -DCURLDEBUG (usually, rerunning configure with --enable-debug
fixes this). make clean first, then make so that all files are actually rebuilt properly. It
also makes sense to build libcurl with the debug option (usually -g to the compiler) so
that debugging it gets easier if you actually do find a leak in the library.

477



478 MEMORY DEBUGGING

This builds a library that has memory debugging enabled.

Modify Your Application
Add a line in your application code:

curl_dbg_memdebug("dump");

This makes the malloc debug system output a full trace of all resources using functions to
the given filename. Make sure you rebuild your program and that you link with the same
libcurl you built for this purpose as described above.

Run Your Application
Run your program as usual. Watch the specified memory trace file grow.

Make your program exit and use the proper libcurl cleanup functions etc. So that all
non-leaks are returned/freed properly.

Analyze the Flow
Use the tests/memanalyze.pl perl script to analyze the dump file:

$ tests/memanalyze.pl dump

This now outputs a report on what resources that were allocated but never freed etc. This
report is fine for posting to the list.

If this does not produce any output, no leak was detected in libcurl. Then the leak is
mostly likely to be in your code.



Content Encoding

About content encodings
[HTTP/1.1][4] specifies that a client may request that a server encode its response. This is
usually used to compress a response using one (or more) encodings from a set of commonly
available compression techniques. These schemes include deflate (the zlib algorithm),
gzip, br (brotli) and compress. A client requests that the server perform an encoding
by including an Accept-Encoding header in the request document. The value of the
header should be one of the recognized tokens deflate, . . . (there is a way to register
new schemes/tokens, see sec 3.5 of the spec). A server MAY honor the client’s encoding
request. When a response is encoded, the server includes a Content-Encoding header in
the response. The value of the Content-Encoding header indicates which encodings were
used to encode the data, in the order in which they were applied.

It is also possible for a client to attach priorities to different schemes so that the server knows
which it prefers. See sec 14.3 of RFC 2616 for more information on the Accept-Encoding
header. See sec 3.1.2.2 of RFC 7231 for more information on the Content-Encoding
header.

Supported content encodings
The deflate, gzip, zstd and br content encodings are supported by libcurl. Both regular
and chunked transfers work fine. The zlib library is required for the deflate and gzip
encodings, the brotli decoding library is for the br encoding and not too surprisingly
libzstd does zstd.

The libcurl interface
To cause libcurl to request a content encoding use:

[curl_easy_setopt][1](curl, [CURLOPT_ACCEPT_ENCODING][5], string)

where string is the intended value of the Accept-Encoding header.

Currently, libcurl does support multiple encodings but only understands how to process
responses that use the deflate, gzip, zstd and/or br content encodings, so the only values
for [CURLOPT_ACCEPT_ENCODING][5] that work (besides identity, which does nothing) are
deflate, gzip, zstd and br. If a response is encoded using the compress or methods,
libcurl returns an error indicating that the response could not be decoded. If <string>

479

https://datatracker.ietf.org/doc/html/rfc7231#section-3.1.2.2


480 CONTENT ENCODING

is NULL no Accept-Encoding header is generated. If <string> is a zero-length string,
then an Accept-Encoding header containing all supported encodings is generated.

The [CURLOPT_ACCEPT_ENCODING][5] must be set to any non-NULL value for content to be
automatically decoded. If it is not set and the server still sends encoded content (despite
not having been asked), the data is returned in its raw form and the Content-Encoding
type is not checked.

The curl interface
Use the [--compressed][6] option with curl to cause it to ask servers to compress responses
using any format supported by curl.



Structs

This section documents internal structs. Since they are truly internal, we change them
occasionally which might make this section slightly out of date at times.

Curl_easy
The Curl_easy struct is the one returned to the outside in the external API as an opaque
CURL *. This pointer is usually known as an easy handle in API documentations and
examples.

Information and state that is related to the actual connection is in the connectdata struct.
When a transfer is about to be made, libcurl either creates a new connection or re-uses
an existing one. The current connectdata that is used by this handle is pointed out by
Curl_easy->conn.

Data and information that regard this particular single transfer is put in the SingleRequest
sub-struct.

When the Curl_easy struct is added to a multi handle, as it must be in order to do any
transfer, the ->multi member points to the Curl_multi struct it belongs to. The ->prev
and ->next members are then used by the multi code to keep a linked list of Curl_easy
structs that are added to that same multi handle. libcurl always uses multi so ->multi
points to a Curl_multi when a transfer is in progress.

->mstate is the multi state of this particular Curl_easy. When multi_runsingle() is
called, it acts on this handle according to which state it is in. The mstate is also what
tells which sockets to return for a specific Curl_easy when [curl_multi_fdset()][12] is
called etc.

The libcurl source code generally use the name data everywhere for the local variable that
points to the Curl_easy struct.

When doing multiplexed HTTP/2 transfers, each Curl_easy is associated with an indi-
vidual stream, sharing the same connectdata struct. Multiplexing makes it even more
important to keep things associated with the right thing.

connectdata
A general idea in libcurl is to keep connections around in a connection cache after they
have been used in case they are used again and then re-use an existing one instead of
creating a new one as it creates a significant performance boost.

481



482 STRUCTS

Each connectdata struct identifies a single physical connection to a server. If the connec-
tion cannot be kept alive, the connection is closed after use and then this struct can be
removed from the cache and freed.

Thus, the same Curl_easy can be used multiple times and each time select another
connectdata struct to use for the connection. Keep this in mind, as it is then important
to consider if options or choices are based on the connection or the Curl_easy.

As a special complexity, some protocols supported by libcurl require a special disconnect
procedure that is more than just shutting down the socket. It can involve sending one or
more commands to the server before doing so. Since connections are kept in the connection
cache after use, the original Curl_easy may no longer be around when the time comes
to shut down a particular connection. For this purpose, libcurl holds a special dummy
closure_handle Curl_easy in the Curl_multi struct to use when needed.

FTP uses two TCP connections for a typical transfer but it keeps both in this single struct
and thus can be considered a single connection for most internal concerns.

The libcurl source code generally uses the name conn for the local variable that points to
the connectdata.

Curl_multi
Internally, the easy interface is implemented as a wrapper around multi interface functions.
This makes everything multi interface.

Curl_multi is the multi handle struct exposed as the opaque CURLM * in external APIs.

This struct holds a list of Curl_easy structs that have been added to this handle with
[curl_multi_add_handle()][13]. The start of the list is ->easyp and ->num_easy is a
counter of added Curl_easys.

->msglist is a linked list of messages to send back when [curl_multi_info_read()][14]
is called. Basically a node is added to that list when an individual Curl_easy’s transfer
has completed.

->hostcache points to the name cache. It is a hash table for looking up name to IP. The
nodes have a limited lifetime in there and this cache is meant to reduce the time for when
the same name is wanted within a short period of time.

->timetree points to a tree of Curl_easys, sorted by the remaining time until it should
be checked - normally some sort of timeout. Each Curl_easy has one node in the tree.

->sockhash is a hash table to allow fast lookups of socket descriptor for which Curl_easy
uses that descriptor. This is necessary for the multi_socket API.

->conn_cache points to the connection cache. It keeps track of all connections that are
kept after use. The cache has a maximum size.

->closure_handle is described in the connectdata section.

The libcurl source code generally uses the name multi for the variable that points to the
Curl_multi struct.



CURL_HANDLER 483

Curl_handler
Each unique protocol that is supported by libcurl needs to provide at least one
Curl_handler struct. It defines what the protocol is called and what functions the main
code should call to deal with protocol specific issues. In general, there is a source file named
[protocol].c in which there is a struct Curl_handler Curl_handler_[protocol]
declared. In url.c there is then the main array with all individual Curl_handler structs
pointed to from a single array which is scanned through when a URL is given to libcurl to
work with.

The concrete function pointer prototypes can be found in lib/urldata.h.

• ->scheme is the URL scheme name, usually spelled out in uppercase. That is HTTP
or FTP etc. SSL versions of the protocol need their own Curl_handler setup so
HTTPS separate from HTTP.

• ->setup_connection is called to allow the protocol code to allocate protocol specific
data that then gets associated with that Curl_easy for the rest of this transfer. It
gets freed again at the end of the transfer. It gets called before the connectdata for
the transfer has been selected/created. Most protocols allocate its private struct
[PROTOCOL] here and assign Curl_easy->req.p.[protocol] to it.

• ->connect_it allows a protocol to do some specific actions after the TCP connect
is done, that can still be considered part of the connection phase. Some protocols
alter the connectdata->recv[] and connectdata->send[] function pointers in
this function.

• ->connecting is similarly a function that keeps getting called as long as the protocol
considers itself still in the connecting phase.

• ->do_it is the function called to issue the transfer request. What we call the DO
action internally. If the DO is not enough and things need to be kept getting done
for the entire DO sequence to complete, ->doing is then usually also provided.
Each protocol that needs to do multiple commands or similar for do/doing needs to
implement their own state machines (see SCP, SFTP, FTP). Some protocols (only
FTP and only due to historical reasons) have a separate piece of the DO state called
DO_MORE.

• ->doing keeps getting called while issuing the transfer request command(s)

• ->done gets called when the transfer is complete and DONE. That is after the main
data has been transferred.

• ->do_more gets called during the DO_MORE state. The FTP protocol uses this state
when setting up the second connection.

• ->proto_getsock, ->doing_getsock, ->domore_getsock, ->perform_getsock
Functions that return socket information. Which socket(s) to wait for which I/O
action(s) during the particular multi state.

• ->disconnect is called immediately before the TCP connection is shutdown.

• ->readwrite gets called during transfer to allow the protocol to do extra reads/writes

• ->attach attaches a transfer to the connection.



484 STRUCTS

• ->defport is the default report TCP or UDP port this protocol uses

• ->protocol is one or more bits in the CURLPROTO_* set. The SSL versions have
their base protocol set and then the SSL variation. Like HTTP|HTTPS.

• ->flags is a bitmask with additional information about the protocol that makes it
get treated differently by the generic engine:

– PROTOPT_SSL - makes it connect and negotiate SSL
– PROTOPT_DUAL - this protocol uses two connections
– PROTOPT_CLOSEACTION - this protocol has actions to do before closing the

connection. This flag is no longer used by code, yet still set for a bunch of
protocol handlers.

– PROTOPT_DIRLOCK - direction lock. The SSH protocols set this bit to limit
which direction of socket actions that the main engine concerns itself with.

– PROTOPT_NONETWORK - a protocol that does not use the network (read file:)
– PROTOPT_NEEDSPWD - this protocol needs a password and uses a default one

unless one is provided
– PROTOPT_NOURLQUERY - this protocol cannot handle a query part on the URL
(?foo=bar)

conncache
Is a hash table with connections for later re-use. Each Curl_easy has a pointer to its
connection cache. Each multi handle sets up a connection cache that all added Curl_easys
share by default.

Curl_share
The libcurl share API allocates a Curl_share struct, exposed to the external API as
CURLSH *.

The idea is that the struct can have a set of its own versions of caches and pools and then
by providing this struct in the CURLOPT_SHARE option, those specific Curl_easys use the
caches/pools that this share handle holds.

Then individual Curl_easy structs can be made to share specific things that they otherwise
would not, such as cookies.

The Curl_share struct can currently hold cookies, DNS cache and the SSL session cache.

CookieInfo
This is the main cookie struct. It holds all known cookies and related information. Each
Curl_easy has its own private CookieInfo even when they are added to a multi handle.
They can be made to share cookies by using the share API.



Resolving host names

Aka hostip.c explained

The main compile-time defines to keep in mind when reading the host*.c source file are
these:

CURLRES_IPV6

this host has getaddrinfo() and family, and thus we use that. The host may not be able
to resolve IPv6, but we do not really have to take that into account. Hosts that are not
IPv6-enabled have CURLRES_IPV4 defined.

CURLRES_ARES

is defined if libcurl is built to use c-ares for asynchronous name resolves. This can be
Windows or *nix.

CURLRES_THREADED

is defined if libcurl is built to use threading for asynchronous name resolves. The name
resolve is done in a new thread, and the supported asynch API is be the same as for
ares-builds. This is the default under (native) Windows.

If any of the two previous are defined, CURLRES_ASYNCH is defined too. If libcurl is not
built to use an asynchronous resolver, CURLRES_SYNCH is defined.

host*.c sources
The host*.c sources files are split up like this:

• hostip.c - method-independent resolver functions and utility functions
• hostasyn.c - functions for asynchronous name resolves
• hostsyn.c - functions for synchronous name resolves
• asyn-ares.c - functions for asynchronous name resolves using c-ares
• asyn-thread.c - functions for asynchronous name resolves using threads
• hostip4.c - IPv4 specific functions
• hostip6.c - IPv6 specific functions

The hostip.h is the single united header file for all this. It defines the CURLRES_* defines
based on the config*.h and curl_setup.h defines.

485



Tests

The curl test suite is a fundamental cornerstone in our development process. It helps us
verify that existing functionality is still there like before, and we use it to check that new
functionality behaves as expected.

With every bugfix and new feature, we ideally also create one or more test cases.

The test suite is custom made and tailored specifically for our own purposes to allow us to
test curl from every possible angle that we think we need. It does not rely on any third
party test frameworks.

The tests are meant to be possible to build and run on virtually all platforms available.

• Test file format
• Build tests
• Run tests
• Debug builds
• Test servers
• curl tests
• libcurl tests
• Unit tests
• Valgrind
• Continuous Integration
• Autobuilds
• Torture

486



Test file format

Each curl test is designed in a single text file using an XML-like format.

Labels mark the beginning and the end of all sections, and each label must be written in
its own line. Comments are either XML-style (enclosed with <!-- and -->) or shell script
style (beginning with #) and must appear on their own lines and not alongside actual
test data. Most test data files are syntactically valid XML, although a few files are not
(lack of support for character entities and the preservation of carriage return and linefeed
characters at the end of lines are the biggest differences).

All tests must begin with a <testcase> tag, which encompasses the remainder of the file.
See below for other tags.

Each test file is called tests/data/testNUMBER where NUMBER is a unique numerical test
identifier. Each test has to use its own dedicated number. The number has no meaning
other than identifying the test.

The test file defines exactly what command line or tool to run, what test servers to invoke
and how they should respond, exactly what protocol exchange that should happen, what
output and return code to expect and much more.

Everything is written within their dedicated tags like this when the name is set:

<name>
HTTP with host name written backwards
</name>

keywords
Every test has one or more <keywords> set in the top of the file. They are meant to be
“tags” that identify features and protocols that are tested by this test case. runtests.pl
can be made to run only tests that match (or do not match) such keywords.

Preprocessed
Under the hood, each test input file is preprocessed at startup by runtests.pl. This
means that variables, macros and keywords are expanded and a temporary version of the
file is stored in tests/log/testNUMBER - and that file is then used by all the test servers
etc.

This processing allows the test format to offer features like %repeat to create really big
test files without bloating the input files correspondingly.

487



488 TEST FILE FORMAT

Base64 Encoding
In the preprocess stage, a special instruction can be used to have runtests.pl base64 encode
a certain section and insert in the generated output file. This is in particular good for test
cases where the test tool is expected to pass in base64 encoded content that might use
dynamic information that is unique for this particular test invocation, like the server port
number.

To insert a base64 encoded string into the output, use this syntax:

%b64[ data to encode ]b64%

The data to encode can then use any of the existing variables mentioned below, or even
percent-encoded individual bytes. As an example, insert the HTTP server’s port number
(in ASCII) followed by a space and the hexadecimal byte 9a:

%b64[%HTTPPORT %9a]b64%

Hexadecimal decoding
In the preprocess stage, a special instruction can be used to have runtests.pl generate a
sequence of binary bytes.

To insert a sequence of bytes from a hex encoded string, use this syntax:

%hex[ %XX-encoded data to decode ]hex%

For example, to insert the binary octets 0, 1 and 255 into the test file:

%hex[ %00%01%FF ]hex%

Repeat content
In the preprocess stage, a special instruction can be used to have runtests.pl generate a
repetitive sequence of bytes.

To insert a sequence of repeat bytes, use this syntax to make the <string> get repeated
<number> of times. The number has to be 1 or larger and the string may contain %HH
hexadecimal codes:

%repeat[<number> x <string>]%

For example, to insert the word hello a 100 times:

%repeat[100 x hello]%

Conditional lines
Lines in the test file can be made to appear conditionally on a specific feature (see the
“features” section below) being set or not set. If the specific feature is present, the following
lines are output, otherwise it outputs nothing, until a following else or endif clause. Like
this:



VARIABLES 489

%if brotli
Accept-Encoding
%endif

It can also check for the inverse condition, so if the feature is not set by the use of an
exclamation mark:

%if !brotli
Accept-Encoding: not-brotli
%endif

You can also make an “else” clause to get output for the opposite condition, like:

%if brotli
Accept-Encoding: brotli
%else
Accept-Encoding: nothing
%endif

Note that there can be no nested conditions. You can only do one conditional at a time
and you can only check for a single feature in it.

Variables
When the test is preprocessed, a range of variables in the test file are replaced by their
content at that time.

Available substitute variables include:

• %CLIENT6IP - IPv6 address of the client running curl
• %CLIENTIP - IPv4 address of the client running curl
• %CURL - Path to the curl executable
• %FILE_PWD - Current directory, on windows prefixed with a slash
• %FTP6PORT - IPv6 port number of the FTP server
• %FTPPORT - Port number of the FTP server
• %FTPSPORT - Port number of the FTPS server
• %FTPTIME2 - Timeout in seconds that should be just sufficient to receive a response

from the test FTP server
• %FTPTIME3 - Even longer than %FTPTIME2
• %GOPHER6PORT - IPv6 port number of the Gopher server
• %GOPHERPORT - Port number of the Gopher server
• %GOPHERSPORT - Port number of the Gophers server
• %HOST6IP - IPv6 address of the host running this test
• %HOSTIP - IPv4 address of the host running this test
• %HTTP6PORT - IPv6 port number of the HTTP server
• %HTTPPORT - Port number of the HTTP server
• %HTTP2PORT - Port number of the HTTP/2 server
• %HTTPSPORT - Port number of the HTTPS server
• %HTTPSPROXYPORT - Port number of the HTTPS-proxy
• %HTTPTLS6PORT - IPv6 port number of the HTTP TLS server
• %HTTPTLSPORT - Port number of the HTTP TLS server
• %HTTPUNIXPATH - Path to the Unix socket of the HTTP server



490 TEST FILE FORMAT

• %SOCKSUNIXPATH - Absolute Path to the Unix socket of the SOCKS server
• %IMAP6PORT - IPv6 port number of the IMAP server
• %IMAPPORT - Port number of the IMAP server
• %MQTTPORT - Port number of the MQTT server
• %TELNETPORT - Port number of the telnet server
• %NOLISTENPORT - Port number where no service is listening
• %POP36PORT - IPv6 port number of the POP3 server
• %POP3PORT - Port number of the POP3 server
• %POSIX_PWD - Current directory somewhat mingw friendly
• %PROXYPORT - Port number of the HTTP proxy
• %PWD - Current directory
• %RTSP6PORT - IPv6 port number of the RTSP server
• %RTSPPORT - Port number of the RTSP server
• %SMBPORT - Port number of the SMB server
• %SMBSPORT - Port number of the SMBS server
• %SMTP6PORT - IPv6 port number of the SMTP server
• %SMTPPORT - Port number of the SMTP server
• %SOCKSPORT - Port number of the SOCKS4/5 server
• %SRCDIR - Full path to the source dir
• %SSHPORT - Port number of the SCP/SFTP server
• %SSHSRVMD5 - MD5 of SSH server’s public key
• %SSHSRVSHA256 - SHA256 of SSH server’s public key
• %SSH_PWD - Current directory friendly for the SSH server
• %TESTNUMBER - Number of the test case
• %TFTP6PORT - IPv6 port number of the TFTP server
• %TFTPPORT - Port number of the TFTP server
• %USER - Login ID of the user running the test
• %VERSION - the full version number of the tested curl



Tags

Each test is always specified entirely within the <testcase> tag. Each test case is further
split up into four main sections: info, reply, client and verify.

• info provides information about the test case

• reply is used for the server to know what to send as a reply for the requests curl
sends

• client defines how the client should behave

• verify defines how to verify that the data stored after a command has been run
ended up correctly

Each main section supports a number of available sub-tags that can be specified, that are
checked/used if specified.

<info>

<keywords>

A newline-separated list of keywords describing what this test case uses and tests. Try to
use already used keywords. These keywords are used for statistical/informational purposes
and for choosing or skipping classes of tests. “Keywords” must begin with an alphabetic
character, “-”, “[” or “{” and may consist of multiple words separated by spaces which are
treated together as a single identifier.

When using curl built with Hyper, the keywords must include HTTP or HTTPS for ‘hyper
mode’ to kick in and make line ending checks work for tests.

<reply>

<data [nocheck="yes"] [sendzero="yes"] [base64="yes"] [hex="yes"]
[nonewline="yes"]>

data to be sent to the client on its request and later verified that it arrived safely. Set
nocheck="yes" to prevent the test script from verifying the arrival of this data.

If the data contains swsclose anywhere within the start and end tag, and this is an HTTP
test, then the connection is closed by the server after this response is sent. If not, the
connection is kept persistent.

491



492 TAGS

If the data contains swsbounce anywhere within the start and end tag, the HTTP server
detects if this is a second request using the same test and part number and then increases
the part number with one. This is useful for auth tests and similar.

sendzero=yes means that the (FTP) server “sends” the data even if the size is zero bytes.
Used to verify curl’s behavior on zero bytes transfers.

base64=yes means that the data provided in the test-file is a chunk of data encoded with
base64. It is the only way a test case can contain binary data. (This attribute can in fact
be used on any section, but it does not make much sense for other sections than “data”).

hex=yes means that the data is a sequence of hex pairs. It gets decoded and used as “raw”
data.

nonewline=yes means that the last byte (the trailing newline character) should be cut off
from the data before sending or comparing it.

For FTP file listings, the <data> section is used only if you make sure that there has been
a CWD done first to a directory named test-[number] where [number] is the test case
number. Otherwise the ftp server cannot know from which test file to load the list content.

<dataNUMBER>

Send back this contents instead of the one. The number NUMBER is set by:

• The test number in the request line is >10000 and this is the remainder of [test case
number]%10000.

• The request was HTTP and included digest details, which adds 1000 to the number
• If an HTTP request is NTLM type-1, it adds 1001 to the number
• If an HTTP request is NTLM type-3, it adds 1002 to the number
• If an HTTP request is Basic and the number is already >=1000, it adds 1
• If an HTTP request is Negotiate, the number gets incremented by one for each

request with Negotiate authorization header on the same test case.

Dynamically changing the test number in this way allows the test harness to be used to
test authentication negotiation where several different requests must be sent to complete a
transfer. The response to each request is found in its own data section. Validating the
entire negotiation sequence can be done by specifying a datacheck section.

<connect>

The connect section is used instead of the ‘data’ for all CONNECT requests. The remainder
of the rules for the data section then apply but with a connect prefix.

<socks>

Address type and address details as logged by the SOCKS proxy.

<datacheck [mode="text"] [nonewline="yes"]>

if the data is sent but this is what should be checked afterwards. If nonewline=yes is set,
runtests cuts off the trailing newline from the data before comparing with the one actually
received by the client.



<REPLY> 493

Use the mode="text" attribute if the output is in text mode on platforms that have a
text/binary difference.

<datacheckNUM [nonewline="yes"] [mode="text"]>

The contents of numbered datacheck sections are appended to the non-numbered one.

<size>

number to return on an ftp SIZE command (set to -1 to make this command fail)

<mdtm>

what to send back if the client sends an FTP MDTM command, set to -1 to have it return
that the file does not exist

<postcmd>

special purpose server-command to control its behavior after the reply is sent For
HTTP/HTTPS, these are supported:

wait [secs] - Pause for the given time

<servercmd>

Special-commands for the server.

The first line of this file is always set to Testnum [number] by the test script, to allow
servers to read that to know what test the client is about to issue.

For FTP/SMTP/POP/IMAP

• REPLY [command] [return value] [response string] - Changes how the server
responds to the [command]. [response string] is evaluated as a perl string, so it can
contain embedded \r\n, for example. There is a special [command] named “welcome”
(without quotes) which is the string sent immediately on connect as a welcome.

• REPLYLF (like above but sends the response terminated with LF-only and not CRLF)
• COUNT [command] [number] - Do the REPLY change for [command] only [number]

times and then go back to the built-in approach
• DELAY [command] [secs] - Delay responding to this command for the given time
• RETRWEIRDO - Enable the “weirdo” RETR case when multiple response lines appear

at once when a file is transferred
• RETRNOSIZE - Make sure the RETR response does not contain the size of the file
• NOSAVE - Do not save what is received
• SLOWDOWN - Send FTP responses with 0.01 sec delay between each byte
• PASVBADIP - makes PASV send back an illegal IP in its 227 response
• CAPA [capabilities] - Enables support for and specifies a list of space separated

capabilities to return to the client for the IMAP CAPABILITY, POP3 CAPA and SMTP
EHLO commands

• AUTH [mechanisms] - Enables support for SASL authentication and specifies a list
of space separated mechanisms for IMAP, POP3 and SMTP



494 TAGS

• STOR [msg] respond with this instead of default after STOR

For HTTP/HTTPS

• auth_required if this is set and a POST/PUT is made without auth, the server
does NOT wait for the full request body to get sent

• idle - do nothing after receiving the request, just “sit idle”
• stream - continuously send data to the client, never-ending
• writedelay: [msecs] delay this amount between reply packets
• skip: [number] - instructs the server to ignore reading this many bytes from a

PUT or POST request
• rtp: part [num] channel [num] size [num] - stream a fake RTP packet for the

given part on a chosen channel with the given payload size
• connection-monitor - When used, this logs [DISCONNECT] to the server.input

log when the connection is disconnected.
• upgrade - when an HTTP upgrade header is found, the server upgrades to http2
• swsclose - instruct server to close connection after response
• no-expect - do not read the request body if Expect: is present

For TFTP

writedelay: [secs] delay this amount between reply packets (each packet being 512
bytes payload)

<client>

<server>

What server(s) this test case requires/uses. Available servers:

• file
• ftp-ipv6
• ftp
• ftps
• gopher
• gophers
• http-ipv6
• http-proxy
• http-unix
• http/2
• http
• https
• httptls+srp-ipv6
• httptls+srp
• imap
• mqtt
• none
• pop3
• rtsp-ipv6
• rtsp



<CLIENT> 495

• scp
• sftp
• smtp
• socks4
• socks5

Enter only one server per line. This subsection is mandatory.

<features>

A list of features that MUST be present in the client/library for this test to be able to
run. If a required feature is not present then the test is SKIPPED.

Alternatively a feature can be prefixed with an exclamation mark to indicate a feature is
NOT required. If the feature is present then the test is SKIPPED.

Features testable here are:

• alt-svc
• bearssl
• c-ares
• cookies
• crypto
• debug
• DoH
• getrlimit
• GnuTLS
• GSS-API
• h2c
• HSTS
• HTTP-auth
• http/2
• hyper
• idn
• ipv6
• Kerberos
• large_file
• ld_preload
• libssh2
• libssh
• oldlibssh (versions before 0.9.4)
• libz
• manual
• Mime
• netrc
• NTLM
• OpenSSL
• parsedate
• proxy
• PSL
• rustls



496 TAGS

• Schannel
• sectransp
• shuffle-dns
• socks
• SPNEGO
• SSL
• SSLpinning
• SSPI
• threaded-resolver
• TLS-SRP
• TrackMemory
• typecheck
• Unicode
• unittest
• unix-sockets
• verbose-strings
• wakeup
• win32
• wolfssh
• wolfssl

in addition to all protocols that curl supports. A protocol only needs to be specified if it
is different from the server (useful when the server is none).

<killserver>

Using the same syntax as in <server> but when mentioned here these servers are explicitly
KILLED when this test case is completed. Only use this if there is no other alternatives.
Using this of course requires subsequent tests to restart servers.

<precheck>

A command line that if set gets run by the test script before the test. If an output is
displayed by the command or if the return code is non-zero, the test gets skipped and the
(single-line) output is displayed as reason for not running the test.

<postcheck>

A command line that if set gets run by the test script after the test. If the command
exists with a non-zero status code, the test is considered failed.

<tool>

Name of tool to invoke instead of “curl”. This tool must be built and exist either in the
libtest/ directory (if the tool name starts with lib) or in the unit/ directory (if the
tool name starts with unit).

<name>

Brief test case description, shown when the test runs.



<CLIENT> 497

<setenv>

variable1=contents1
variable2=contents2

Set the given environment variables to the specified value before the actual command is
run. They are cleared again after the command has been run.

<command [option="no-output/no-include/force-output/binary-trace"]
[timeout="secs"][delay="secs"][type="perl/shell"]>

Command line to run.

Note that the URL that gets passed to the server actually controls what data that is
returned. The last slash in the URL must be followed by a number. That number (N) is
used by the test-server to load test case N and return the data that is defined within the
<reply><data></data></reply> section.

If there is no test number found above, the HTTP test server uses the number following
the last dot in the given hostname (made so that a CONNECT can still pass on test
number) so that “foo.bar.123” gets treated as test case 123. Alternatively, if an IPv6
address is provided to CONNECT, the last hexadecimal group in the address is used as
the test number. For example the address “[1234::ff]” would be treated as test case 255.

Set type="perl" to write the test case as a perl script. It implies that there is no memory
debugging and valgrind gets shut off for this test.

Set type="shell" to write the test case as a shell script. It implies that there is no
memory debugging and valgrind gets shut off for this test.

Set option="no-output" to prevent the test script to slap on the --output argument
that directs the output to a file. The --output is also not added if the verify/stdout
section is used.

Set option="force-output" to make use of --output even when the test is otherwise
written to verify stdout.

Set option="no-include" to prevent the test script to slap on the --include argument.

Set option="binary-trace" to use --trace instead of --trace-ascii for tracing. Suit-
able for binary-oriented protocols such as MQTT.

Set timeout="secs" to override default server logs advisor read lock timeout. This timeout
is used by the test harness, once that the command has completed execution, to wait for
the test server to write out server side log files and remove the lock that advised not to
read them. The “secs” parameter is the not negative integer number of seconds for the
timeout. This timeout attribute is documented for completeness sake, but is deep test
harness stuff and only needed for specific test cases. Avoid using it.

Set delay="secs" to introduce a time delay once that the command has completed
execution and before the <postcheck> section runs. The “secs” parameter is the not
negative integer number of seconds for the delay. This ‘delay’ attribute is intended for
specific test cases, and normally not needed.



498 TAGS

<file name="log/filename" [nonewline="yes"]>

This creates the named file with this content before the test case is run, which is useful if
the test case needs a file to act on.

If nonewline="yes" is used, the created file gets the final newline stripped off.

<stdin [nonewline="yes"]>

Pass this given data on stdin to the tool.

If nonewline is set, we cut off the trailing newline of this given data before comparing
with the one actually received by the client

<verify>

<errorcode>

numerical error code curl is supposed to return. Specify a list of accepted error codes by
separating multiple numbers with comma. See test 237 for an example.

<strip>

One regex per line that is removed from the protocol dumps before the comparison is
made. This is useful to remove dependencies on dynamically changing protocol data such
as port numbers or user-agent strings.

<strippart>

One perl op per line that operates on the protocol dump. This is pretty advanced. Example:
s/ˆEPRT .*/EPRT stripped/.

<protocol [nonewline="yes"]>

the protocol dump curl should transmit, if nonewline is set, we cut off the trailing newline
of this given data before comparing with the one actually sent by the client The <strip>
and <strippart> rules are applied before comparisons are made.

<proxy [nonewline="yes"]>

The protocol dump curl should transmit to an HTTP proxy (when the http-proxy server
is used), if nonewline is set, we cut off the trailing newline of this given data before
comparing with the one actually sent by the client The <strip> and <strippart> rules
are applied before comparisons are made.

<stderr [mode="text"] [nonewline="yes"]>

This verifies that this data was passed to stderr.

Use the mode="text" attribute if the output is in text mode on platforms that have a
text/binary difference.



<VERIFY> 499

If nonewline is set, we cut off the trailing newline of this given data before comparing
with the one actually received by the client

<stdout [mode="text"] [nonewline="yes"]>

This verifies that this data was passed to stdout.

Use the mode="text" attribute if the output is in text mode on platforms that have a
text/binary difference.

If nonewline is set, we cut off the trailing newline of this given data before comparing
with the one actually received by the client

<file name="log/filename" [mode="text"]>

The file’s contents must be identical to this after the test is complete. Use the mode="text"
attribute if the output is in text mode on platforms that have a text/binary difference.

<file1>

1 to 4 can be appended to ‘file’ to compare more files.

<file2>

<file3>

<file4>

<stripfile>

One perl op per line that operates on the output file or stdout before being compared with
what is stored in the test file. This is pretty advanced. Example: "s/ˆEPRT .*/EPRT
stripped/"

<stripfile1>

1 to 4 can be appended to stripfile to strip the corresponding content

<stripfile2>

<stripfile3>

<stripfile4>

<upload>

the contents of the upload data curl should have sent

<valgrind>

disable - disables the valgrind log check for this test



Build tests

Before you can run any tests you need to build curl but also build the test suite and its
associated tools and servers.

Most conveniently, you can just build and run them all by issuing make test in the build
directory root but if you want to work more on tests or perhaps even debug one, you may
want to jump into the tests directory and work from within that. Build it all and run
test 144 like this:

cd tests
make
./runtests.pl 144

500



Run tests

The main script that runs tests is called tests/runtests.pl and some of its more useful
features are:

Run a range of tests
Run test 1 to 27:

./runtests.pl 1 to 27

Run all tests marked as SFTP:

./runtests.pl SFTP

Run all tests not marked FTP:

./runtests.pl ’!FTP’

Run a specific test with gdb
./runtests.pl -g 144

It starts up gdb, you can set break-points etc and then type run and off it goes and
performs the entire thing through the debugger.

Run a specific test without valgrind
The test suite uses valgrind by default if it finds it, which is an excellent way to find
problems but it also makes the test run much slower. Sometimes you want to do it faster:

./runtests.pl -n 144

501



Debug builds

When we speak of debug builds, we usually refer to curl builds that are done with debug
code and symbols still present. We strongly recommend you do this if you want to work
with curl development as it makes it easier to test and debug.

You make a debug build using configure like this:

./configure --enable-debug

Debug-builds make it possible to run individual test cases with gdb with runtests.pl, which
is handy - especially for example if you can make it crash somewhere as then gdb can
catch it and show you exactly where it happens etc.

Debug-builds are also built a little different than regular release builds in that they contain
some snippets of code that makes curl easier to test. For example it allows the test suite
to override the random number generator so that testing for values that otherwise are
random actually work. Also, the unit tests only work on debug builds.

Memdebug
Debug builds also enable the memdebug internal memory tracking and debugging system.

When switched on, the memdebug system outputs detailed information about a lot of
memory-related options into a logfile, so that it can be analyzed and verified after the fact.
Verified that all memory was freed, all files were closed and so on.

This is a poor-man’s version of valgrind but does not at all compare with its features. It
is however fairly portable and low-impact.

In a debug build, the memdebug system is enabled by curl if the CURL_MEMDEBUG envi-
ronment variable is set to a filename, which is used for the log. The test suite sets this
variable for us (see tests/log/memdump) and verifies it after each test run, if present.

502



Test servers

A large portion of the curl test suite actually runs curl command lines that interact with
servers that are started on the local machine for testing purposes only during the test,
and that are shut down again at the end of the test round.

The test servers are custom servers written for this purpose that speak HTTP, FTP, IMAP,
POP3, SMTP, TFTP, MQTT, SOCKS proxies and more.

All test servers are controlled via the test file: which servers that each test case needs to
have running to work, what they should return and how they are supposed to act for each
test.

The test servers typically log their actions in dedicated files in tests/log, and they can
be useful to check out if your test does not act the way you want.

503



curl tests

The standard test in the suite is the “curl test”. They all invoke a curl command line
and verifies that everything it sends, gets back and returns are exactly as expected. Any
mismatch and the test is considered a fail and the script shows details about the error.

What the test features in the <client><command> section is what is used in the command
line, verbatim.

The tests/log/commands.log is handy to look at after a run, as it contains the full
command line that was run in the test.

If you want to make a test that does not invoke the curl command line tool, then you
should consider the libcurl tests or unit tests instead.

504



libcurl tests

A libcurl test is a stand-alone C program that uses the public libcurl API to do something.

Apart from that, everything else is tested, verified and checked the same way curl tests
are.

Since these C programs are usually built and run on a plethora of different platforms,
considerations might need to be taken.

All libcurl test programs are kept in tests/libtest

505



Unit tests

Unit tests only work on debug builds.

Unit tests are tests that use functions that are libcurl internal and therefore not part of
any public API, headers or external documentation.

If the internal function you want to test is made static, they should instead be set
UNITTEST - which then makes debug builds not use static for them and they then become
accessible to test from unit tests.

We provide a set of convenience functions and macros for unit tests to make it quick and
easy to write them.

All unit test programs are kept in tests/unit

506



Valgrind

Valgrind is a popular and powerful tool for debugging programs and especially their use
and abuse of memory.

runtests.pl automatically detects if valgrind is installed on your system and by default
runs tests using valgrind if found. You can pass -n to runtests to disable the use of
valgrind.

Valgrind makes execution much slower, but it is an excellent tool to find memory leaks
and use of uninitialized memory.

507



Continuous Integration

For every pull request submitted to the curl project on GitHub and for every commit
pushed to the master branch in the git repository, a vast amount of virtual machines fire
up, check out that code from git, build it with different options and run the test suite and
make sure that everything is working fine.

We run CI jobs on several different operating systems, including Linux, macOS, Windows,
Solaris and FreeBSD.

We run jobs that build and test many different (combinations of) backends.

We have jobs that use different ways of building: autotools, cmake, winbuild, Visual Studio,
etc.

We verify that the distribution tarball works.

We run source code analyzers.

Failing builds
Unfortunately, due to the complexity of everything involved we often have one or two
CI jobs that seemingly are stuck “permafailing”, that seems to be failing the jobs on a
permanent basis.

We work hard to make them not, but it is a tough job and we often see red builds even for
changes that should otherwise be all green.

508



Autobuilds

Volunteering individuals run the autobuilds. This is a script that runs automatically
that:

• checks out the latest code from the git repository
• builds everything
• runs the test suite
• sends the full log over email to the curl server

As they are then run on different platforms with different build options, they offer an
extra dimension of feedback on curl build health.

Check status
All logs are parsed, managed and displayed on the curl site.

Legacy
We started the autobuild system in 2003, a decade before CI jobs started becoming a
serious alternative.

Now, the autobuilds are more of a legacy system as we are moving more and more into a
world with CI and more direct and earlier feedback.

509

https://curl.se/dev/builds.html


Torture

When curl is built debug enabled, it offers a special kind of testing. The tests we call
torture tests. Do not worry, it is not quite as grim as it may sound.

They verify that libcurl and curl exit paths work without any crash or memory leak
happening,

The torture tests work like this:

• run the single test as-is first
• count the number of invoked fallible functions
• rerun the test once for every falling function call
• make each fallible function call return error, one by one
• verify that there is no leak or crash
• continue until all fallible functions have been made to fail

This way of testing can take a seriously long time. I advise you to switch off valgrind when
trying this out.

Rerun a specific failure
If a single test fails, runtests.pl identifies exactly which “round” that triggered the
problem and by using the -t as shown, you can run a command line that when invoked
only fails that particular fallible function.

Shallow
To make this way of testing a little more practical, the test suite also provides a --shallow
option. This lets the user set a maximum number of fallible functions to fail per test case.
If there are more invokes to fail than is set with this value, the script randomly selects
which ones to fail.

As a special feature, as randomizing things in tests can be uncomfortable, the script uses
a random seed based on year + month, so it remains the same for each calendar month.
Convenient, as if you rerun the same test with the same --shallow value it runs the same
random tests.

You can force a different seed with runtests’ --seed option.

510



Index

A
• –alt-svc: Enable
• –anyauth: Authentication
• apt: Ubuntu and Debian
• Arch Linux: Arch Linux

B
• -b: Web logins and sessions
• –basic: Authentication
• BearSSL: lib/vtls, TLS libraries, <features>
• bindings: Confusions and mix-ups, The library, In website backends, docs
• BoringSSL: TLS libraries, BoringSSL, Restrictions
• brotli: HTTP Compression, Version, Which libcurl version runs, About content

encodings, Conditional lines

C
• -c: Web logins and sessions
• c-ares: c-ares, Line 4: Features, Name resolve tricks with c-ares, Name resolver

backends, CURLRES_ARES, <features>
• C89: Comments
• CA: Available exit codes, MITM proxy, Verifying server certificates, OCSP stapling,

Caches, Verification, All options, Available information, CA store cache
• CA cert cache: CA cert cache
• –ca-native: Native CA stores
• Chrome: Copy as curl, SSLKEYLOGFILE
• clone: Building libcurl on MSYS2, git, Website, build boringssl
• code of conduct: Trust, Code of Conduct
• –compressed: Compression, Gzipped transfers
• –compressed-ssh: Compression
• configure: root, Handling build options, Platform dependent code, Autotools, rpath,

configure, set up the build tree to get detected by curl’s configure, Ifdefs, Memory
debugging, Debug builds

• –connect-timeout: Connection timeout, Never spend more than this to connect
• –connect-to: Provide a replacement name

511



512 INDEX

• connection cache: Persistent connections, Connection cache, All options, Connection
reuse, Multi handle, connection cache, connectdata

• connection pool: Connection reuse, Persistent connections, Connection cache, pool
size, Connection reuse, connection cache

• Connection reuse: Connection reuse, Connection cache, threads, Connection reuse
• content-encoding: Compression, Transfer encoding, About content encodings
• contribute: Code of Conduct, Contributing, Introduction
• Contributing: docs, Contributing
• Cookie engine: Cookie engine
• Cookies: docs, libpsl, Line 4: Features, Not perfect, Server differences, Change the

Host: header, Authentication, Cookie file format, Cookies, All options, Available
information, Authentication, Cookies, Sharing between easy handles, Submit a login
form over HTTP, Cookies, Curl_share, <features>

• copyright: License, Copyright
• curl-announce: curl-announce, Vulnerability handling
• curl-library: curl-users, Make a patch for the mailing list, Vulnerability handling
• curl-users: curl-users, Vulnerability handling
• <curl/curl.h>: include/curl, Header files, –libcurl, Stop slow transfers, Rate limit,

Progress meter, Include files, Get a simple HTTP page, Get a response into memory,
Submit a login form over HTTP, Get an FTP directory listing, Non-blocking HTTP
form-post

• CURLE_ABORTED_BY_CALLBACK: Progress information
• CURLHSTS_ENABLE: Enable HSTS for a handle
• CURLHSTS_READONLYFILE: Enable HSTS for a handle
• CURLINFO_CERTINFO: Available information
• CURLINFO_CONN_ID: Transfer and connection identifiers, Available information
• CURLINFO_CONTENT_TYPE: Post transfer info
• CURLINFO_EFFECTIVE_URL: Available information
• CURLINFO_FILETIME: Available information
• CURLINFO_TOTAL_TIME_T: Available information
• CURLINFO_XFER_ID: Transfer and connection identifiers, Available information
• CURLMOPT_PIPELINING: Multiplexing
• CURLMOPT_SOCKETFUNCTION: socket_callback
• CURLMOPT_TIMERFUNCTION: timer_callback, Exposes just a single timeout

to apps
• CURLOPT_ALTSVC: All options, Enable
• CURLOPT_ALTSVC_CTRL: All options, Enable
• CURLOPT_CA_CACHE_TIMEOUT: CA cert cache, All options
• CURLOPT_CLOSESOCKETFUNCTION: All options, Socket close callback
• CURLOPT_CONNECTTIMEOUT: All options, easy API
• CURLOPT_COOKIE: All options, Setting custom cookies
• CURLOPT_COOKIEFILE: All options, Enable cookie engine with reading, Submit

a login form over HTTP
• CURLOPT_COOKIEJAR: All options, Enable cookie engine with writing
• CURLOPT_COOKIELIST: All options, Add a cookie to the cookie store
• CURLOPT_CURLU: All options, CURLOPT_CURLU
• CURLOPT_CUSTOMREQUEST: All options, Request method
• CURLOPT_DEBUGDATA: Trace everything, All options, Debug
• CURLOPT_DEBUGFUNCTION: Trace everything, All options, Debug



C 513

• CURLOPT_DNS_CACHE_TIMEOUT: DNS cache, All options, Caching
• CURLOPT_DNS_INTERFACE: All options, Name server options
• CURLOPT_DNS_LOCAL_IP4: All options, Name server options
• CURLOPT_DNS_LOCAL_IP6: All options, Name server options
• CURLOPT_DNS_SERVERS: All options, Name server options
• CURLOPT_DNS_USE_GLOBAL_CACHE: All options, No global DNS cache
• CURLOPT_ERRORBUFFER: –libcurl, CURLcode return codes, All options
• CURLOPT_FAILONERROR: All options, About HTTP response code “errors”
• CURLOPT_HEADER: All options, Write data, Referrer, Download headers too
• CURLOPT_HEADERDATA: –libcurl, All options, Header data, Download headers

too
• CURLOPT_HEADERFUNCTION: –libcurl, All options, Header data
• CURLOPT_HSTS: All options, Set a HSTS cache file
• CURLOPT_HSTS_CTRL: All options, Enable HSTS for a handle
• CURLOPT_HTTPGET: All options, Download, Submit a login form over HTTP
• CURLOPT_HTTPHEADER: All options, Add a header, HTTP PUT, Non-blocking

HTTP form-post
• CURLOPT_HTTPPOST: All options
• CURLOPT_IPRESOLVE: All options, How libcurl connects, Name resolving
• CURLOPT_LOW_SPEED_LIMIT: All options, easy API, Stop slow transfers
• CURLOPT_LOW_SPEED_TIME: All options, easy API, Stop slow transfers
• CURLOPT_MAXFILESIZE_LARGE: Set numerical options, All options
• CURLOPT_MAXREDIRS: –libcurl, All options
• CURLOPT_MIMEPOST: All options, HTTP multipart formposts, Non-blocking

HTTP form-post
• CURLOPT_NOBODY: All options, Request method
• CURLOPT_NOPROGRESS: –libcurl, All options, Progress information, Progress

meter
• CURLOPT_OPENSOCKETDATA: All options, Provide a file descriptor
• CURLOPT_OPENSOCKETFUNCTION: All options, Provide a file descriptor
• CURLOPT_PIPEWAIT: All options, Multiplexing
• CURLOPT_POST: All options, HTTP POST
• CURLOPT_POSTFIELDS: Set string options, All options, Request method, HTTP

POST, Submit a login form over HTTP
• CURLOPT_POSTFIELDSIZE: CURLOPT_POSTFIELDS, All options, HTTP POST
• CURLOPT_POSTREDIR: Decide what method to use in redirects, All options
• CURLOPT_PROGRESSFUNCTION: All options, Progress information
• CURLOPT_PROXY: All options, Proxy types
• CURLOPT_PROXYPORT: All options, Proxy types
• CURLOPT_PROXYTYPE: All options, Proxy types
• CURLOPT_READDATA: –libcurl, All options, Read data
• CURLOPT_READFUNCTION: –libcurl, All options, Read data, HTTP POST
• CURLOPT_RESOLVE: All options, Custom addresses for hosts
• CURLOPT_SEEKDATA: –libcurl, All options, Seek and ioctl
• CURLOPT_SEEKFUNCTION: –libcurl, All options, Seek and ioctl
• CURLOPT_SOCKOPTDATA: All options, sockopt
• CURLOPT_SOCKOPTFUNCTION: All options, sockopt
• CURLOPT_SSH_KNOWNHOSTS: –libcurl, All options, SSH key
• CURLOPT_SSLVERSION: Protocol version, All options



514 INDEX

• CURLOPT_SSL_VERIFYHOST: Verification, All options
• CURLOPT_SSL_VERIFYPEER: Verification, All options, HTTPS proxy
• CURLOPT_STDERR: –libcurl, Verbose operations, All options
• CURLOPT_TCP_KEEPALIVE: –libcurl, All options
• CURLOPT_TIMEOUT: Set numerical options, All options, easy API
• CURLOPT_TLSAUTH_USERNAME: TLS auth, All options
• CURLOPT_UPLOAD: All options, Request method, HTTP PUT
• CURLOPT_URL: –libcurl, Strings are C strings, not C++ string objects, Easy

handle, Set string options, All options, Stop slow transfers, Rate limit, Progress
meter, Request method, Bearer, Download, HTTP PUT, CURLOPT_CURLU, Get
a simple HTTP page, Get a response into memory, Submit a login form over HTTP,
Get an FTP directory listing, Non-blocking HTTP form-post

• CURLOPT_USERAGENT: –libcurl, All options, Get a response into memory
• CURLOPT_VERBOSE: Verbose operations, All options, Find a specific option by

name, Download headers too, Non-blocking HTTP form-post
• CURLOPT_WRITEDATA: –libcurl, Callback considerations, All options, Write

data, Get a response into memory
• CURLOPT_WRITEFUNCTION: –libcurl, Callback considerations, All options,

Write data, Get a response into memory
• CURLOPT_XFERINFODATA: All options, Progress information
• CURLOPT_XFERINFOFUNCTION: All options, Progress information
• CURLUPART_FRAGMENT: Get URL parts, Set URL parts
• CURLUPART_HOST: CURLU_PUNYCODE, Get URL parts, Set URL parts
• CURLUPART_PASSWORD: Get URL parts, Set URL parts
• CURLUPART_PATH: Get URL parts, Set URL parts
• CURLUPART_PORT: Get URL parts, Set URL parts
• CURLUPART_QUERY: Get URL parts, Set URL parts, Append to the query
• CURLUPART_USER: Get URL parts, Set URL parts
• curl_easy_cleanup: –libcurl, Stop slow transfers, Rate limit, Progress meter, easy

handle, Bearer, Enable cookie engine with writing, Header struct, Get a simple
HTTP page, Get a response into memory, Submit a login form over HTTP, Get an
FTP directory listing, Non-blocking HTTP form-post

• curl_easy_getinfo: docs/libcurl/opts, Transfer and connection identifiers, Post
transfer info, Response meta-data, Get all cookies from the cookie store

• curl_easy_init: –libcurl, Easy handle, Stop slow transfers, Rate limit, Progress
meter, Bearer, Download, CURLOPT_CURLU, Get a simple HTTP page, Get
a response into memory, Submit a login form over HTTP, Get an FTP directory
listing, Non-blocking HTTP form-post

• curl_easy_option_by_id: Find a specific option by ID
• curl_easy_option_by_next: Iterate over all options
• curl_easy_perform: –libcurl, Drive with easy, Easy API pool, Caching, easy API,

Stop slow transfers, Rate limit, Progress meter, Add a header, Bearer, Download,
Get a simple HTTP page, Get a response into memory, Submit a login form over
HTTP, Get an FTP directory listing, Everything is multi

• curl_easy_reset: Reuse
• curl_easy_setopt: docs/libcurl/opts, –libcurl, CURLcode return codes, Verbose

operations, Strings are C strings, not C++ string objects, Easy handle, Set numerical
options, Set string options, TLS options, All options, Write data, Read data, Progress
information, Header data, Debug, sockopt, Provide a file descriptor, Name resolving,



D 515

Stop slow transfers, Rate limit, Progress meter, Request method, Ranges, User
name and password, Enable cookie engine with reading, Download, HTTP POST,
Multiplexing, Enable HSTS for a handle, Enable, Sharing between easy handles,
CURLOPT_CURLU, Get a simple HTTP page, Get a response into memory,
Submit a login form over HTTP, Get an FTP directory listing, Non-blocking HTTP
form-post

• curl_global_cleanup: Global initialization, Get a response into memory, Get an
FTP directory listing

• curl_global_init: Global initialization, Get a response into memory, Get an FTP
directory listing, Init calls

• curl_global_trace: Trace more
• CURL_IPRESOLVE_V6: Name resolving
• CURL_MAX_WRITE_SIZE: Write data
• curl_mime_addpart: HTTP multipart formposts, Non-blocking HTTP form-post
• curl_mime_filedata: HTTP multipart formposts, Non-blocking HTTP form-post
• curl_mime_init: HTTP multipart formposts, Non-blocking HTTP form-post
• curl_mime_name: HTTP multipart formposts, Non-blocking HTTP form-post
• curl_multi_add_handle: Drive with multi, Many easy handles, Non-blocking HTTP

form-post, Curl_multi
• curl_multi_cleanup: Multi API, Non-blocking HTTP form-post
• curl_multi_fdset: Drive with multi, Curl_easy
• curl_multi_info_read: When is a single transfer done?, When is it done?, Multi

API, Curl_multi
• curl_multi_init: Drive with multi, Non-blocking HTTP form-post
• curl_multi_remove_handle: Drive with multi, Many easy handles, multi API, Multi

API
• curl_multi_setopt: docs/libcurl/opts, Drive with multi, socket_callback, Multiplex-

ing
• curl_multi_socket_action: curl_multi_socket_action, socket_callback
• curl_multi_timeout: Drive with multi, Exposes just a single timeout to apps
• curl_multi_wait: Drive with multi
• curl_off_t: Transfer and connection identifiers, Set numerical options, Progress

information, Seek and ioctl, Rate limit, Available information, Response meta-data,
HTTP PUT, Meta, curl_ws_send()

• CURL_SOCKET_TIMEOUT: timer_callback
• CURL_SSL_BACKEND: Line 1: TLS versions, Multiple TLS backends
• curl_url: Include files, Create, cleanup, duplicate, Parse a URL, Redirect to URL,

Update parts, CURLOPT_CURLU
• curl_url_cleanup: Create, cleanup, duplicate
• curl_url_dup: Create, cleanup, duplicate
• curl_url_get: CURLU_ALLOW_SPACE, Get a URL, Get URL parts
• curl_url_set: Include files, Parse a URL, Redirect to URL, Set URL parts, Append

to the query, CURLOPT_CURLU
• curl_version_info: Which libcurl version runs, Support

D
• -d: Arguments to options, Separate options per URL, POST, MQTT, Method,

Simple POST, Content-Type, Posting binary, Convert to GET, Expect 100-continue,



516 INDEX

Chunked encoded POSTs, Hidden form fields, -d vs -F, HTTP PUT, Web logins and
sessions

• –data: Arguments to options, Separate options per URL, POST, Simple POST,
JSON, URL encode data

• –data-binary: Not perfect, Simple POST, Posting binary, URL encode data
• –data-urlencode: Query, URL encode data, Convert to GET
• debian: Ubuntu and Debian, Version
• Debug callback: Verbose operations, All options, Debug
• development: Project communication, curl-users, Reporting bugs, Commercial sup-

port, Development, The development team, Future, Ubuntu and Debian, Get libcurl
for macOS, Who decides what goes in?, From Safari, Figure out what a browser
sends, Converting a web form, Which libcurl version runs, Verification, Debug builds

• DICT: What protocols does curl support?, DICT, Without scheme, Version, DICT,
CURLU_GUESS_SCHEME

E

• Edge: Copy as curl, Ifdefs
• environment variables: Environment variables, Windows, Proxy environment vari-

ables, Proxy environment variables, <setenv>
• ETag: Conditionals
• –etag-compare: Check by modification of content
• –etag-save: Check by modification of content
• /etc/hosts: Run a local clone, Host, Edit the hosts file
• etiquette: Mailing list etiquette
• event-driven: Drive with multi_socket, Everything is multi

F

• -F: Not perfect, multipart formpost, Method, Sending such a form with curl, -d vs -F
• –fail: Available exit codes, HTTP response codes
• –fail-with-body: HTTP response codes
• Firefox: Copy as curl, Discover your proxy, SSLKEYLOGFILE, User-agent
• Fragment: Query, Fragment, Available –write-out variables, Fragment, Write callback,

Meta, curl_ws_send()
• –ftp-method: multicwd
• –ftp-pasv: Passive connections
• –ftp-port: Available exit codes, Active connections
• –ftp-skip-pasv-ip: Passive connections
• FTPS: What protocols does curl support?, FTPS, TLS libraries, Supported schemes,

Network leakage, Version, Trace options, Protocols allowing upload, Enable TLS,
FTPS, Variables

• future: Project communication, Future, What other protocols are there?, docs, curl-
security@haxx.se, “Not used”, More data, API compatibility, Trace more, Network
data conversion, HSTS, age, Set a timeout



G 517

G
• –get: trurl example command lines, Convert to GET
• git: Daily snapshots, Building libcurl on MSYS2, root, git, Website, Notes, build

boringssl, Continuous Integration, Autobuilds
• Globbing: URL globbing, Uploading with FTP
• GnuTLS: lib/vtls, Select TLS backend, TLS libraries, Native CA stores, OCSP

stapling, Restrictions, <features>
• GOPHER: How it started, What protocols does curl support?, GOPHER, Supported

schemes, Version, Variables
• GOPHERS: What protocols does curl support?, GOPHERS, Supported schemes,

Variables

H
• Happy Eyeballs: All options, Happy Eyeballs
• haproxy: haproxy, All options
• –haproxy-clientip: curl and haproxy
• –haproxy-protocol: curl and haproxy
• –header: Server differences, Proxy headers, JSON, Customize headers
• Header callback: All options, Header data, Response body, Download headers too
• homebrew: macOS
• Host:: HTTP basics, Trace options, Change the Host: header, The HTTP this

generates, Customize headers, Customize HTTP request headers
• –hsts: HSTS cache
• HSTS: HSTS, All options, HSTS, HSTS, HSTS, <features>
• HTTP proxy: How it started, Proxy type, HTTP proxy, Proxy headers, Authentica-

tion, All options, HTTP proxy, Available information, <proxy [nonewline="yes"]>
• HTTP redirects: Short options, Available exit codes, Tell curl to follow redirects,

Submit a login form over HTTP
• HTTP Strict Transport Security: HSTS, HSTS, HSTS
• HTTP/1.1: HTTP, HTTP basics, Trace options, HTTP/2, Debugging with TEL-

NET, HTTP/2, Caveats, The HTTP this generates, GET or POST?, Request
method, Request target, Customize HTTP request headers, Versions, About content
encodings

• HTTP/2: HTTP, docs, nghttp2, Line 4: Features, Available exit codes, More data,
HTTP headers, HTTP/2, HTTP/2, HTTP/3, HTTP/2 and later, GET or POST?,
HTTP/3, Trace more, DNS over HTTPS, Versions, Expect: headers, Multiplexing,
HTTP/3, Different backends, Curl_easy, Variables

• HTTP/3: HTTP, Select HTTP/3 backend, QUIC and HTTP/3, TCP vs UDP, Line 4:
Features, Available exit codes, More data, HTTP headers, HTTP/3, HTTP/3, Which
libcurl version runs, Trace more, HTTP/3, Versions, Expect: headers, Multiplexing,
HTTP/3, Different backends

• HTTP/3 backend: Select HTTP/3 backend
• –http0.9: HTTP/0.9
• –http2: HTTP/2
• –http2-prior-knowledge: HTTP/2
• –http3: Enable
• –http3-only: When QUIC is denied

internals/tests/file-format.md#sect--less-than-proxy--nonewline-yes--greater-than


518 INDEX

• HttpGet: How it started
• HTTPS proxy: Line 4: Features, HTTPS proxy, All options, Local or proxy name

lookup

I
• IDN: libidn2, International Domain Names (IDN), Version, CURLU_URLENCODE, Dif-

ferent backends, <features>
• IETF: Protocols, TLS versions
• Indentation: Indentation
• International Domain Names: libidn2, International Domain Names (IDN), Line 4:

Features
• IPFS: IPFS
• –ipfs-gateway: Gateway
• IPv4: Host, Port number, Available –write-out variables, curl and haproxy, All

options, How libcurl connects, Name resolving, host*.c sources, Variables
• IPv6: Host, Port number, URL globbing, Version, Available –write-out variables,

SOCKS proxy, curl and haproxy, All options, How libcurl connects, Name resolving,
Zone ID, CURLRES_IPV6, Variables

• IRC: How it started, Project communication

J
• JavaScript: Client differences, PAC, JavaScript and forms, JavaScript redirects,

Figure out what the browser does
• –json: trurl example command lines, JSON
• json: Arguments with spaces, Functions, Available –write-out variables, Content-

Type, JSON, POST outside of HTML

K
• -K: Command lines, quotes and aliases, Specify the config file to use
• keep-alive: All options
• –keepalive-time: Keep alive

L
• -L: Short options, Available –write-out variables, Tell curl to follow redirects, Request

method, Redirects
• LD_LIBRARY_PATH: LD_LIBRARY_PATH
• –libcurl: –libcurl
• libcurl version: Line 1: curl, Available exit codes, Which libcurl version, Network

data conversion
• libidn2: libidn2
• libpsl: libpsl
• libressl: TLS libraries, Restrictions
• librtmp: librtmp



M 519

• libssh: SSH libraries, SCP and SFTP, <features>
• libssh2: Running DLL based configurations, SSH libraries, SCP and SFTP,

<features>
• license: Finding users, License, root, License
• –limit-rate: Rate limiting
• –location: Long options, Separate options per URL, Syntax, Tell curl to follow

redirects

M
• –max-filesize: Maximum filesize
• –max-time: Tweak your retries, Maximum time allowed to spend
• MIT: License
• MQTT: What protocols does curl support?, MQTT, Supported schemes, Line 3:

Protocols, MQTT, Variables, Test servers
• mTLS: Client certificates
• multi-threading: multi-threading

N
• name resolving: Hostname resolving, Handling build options, Available –write-out

variables, Name resolve tricks with c-ares, SOCKS proxy, Connection reuse, Name
resolving, Proxy types, Available information, Different backends

• –negotiate: Network leakage, Authentication
• .netrc: Command line leakage, .netrc, All options, <features>
• –netrc-file: Enable netrc
• –netrc-optional: Enable netrc
• nghttp2: nghttp2, Which libcurl version runs
• nix: nix
• –no-clobber: Overwriting, Use the target filename from the server
• –no-eprt: Active connections
• –no-epsv: Passive connections
• NPN: All options
• –ntlm: Network leakage, Authentication

O
• -O: Many options and URLs, Numerical ranges, Download to a file named by the

URL, Use the target filename from the server, Shell redirects, Multiple downloads,
Resuming and ranges, Request rate limiting, Authentication, Download, Check by
modification date

• openldap: openldap
• OpenSSL: Get curl and libcurl on MSYS2, lib/vtls, Select TLS backend, Running

DLL based configurations, TLS libraries, Available exit codes, Native CA stores,
OCSP stapling, Restrictions, CA cert cache, All options, SSL context, Available
information, <features>



520 INDEX

P
• PAC: PAC, Which proxy?
• –parallel: Parallel transfers, Parallel, Request rate limiting
• –parallel-immediate: Connection before multiplex
• –parallel-max: Parallel transfers
• –path-as-is: –path-as-is
• Percent-encoding: URL encode data
• pop3: What protocols does curl support?, POP3, Without scheme, Version, Avail-

able exit codes, Enable TLS, Reading email, Secure mail transfer, STARTTLS,
CURLU_GUESS_SCHEME, Variables, Test servers

• port number: Connect to port numbers, The URL converted to a request, Port
number, trurl example command lines, Available exit codes, Available –write-out
variables, Provide a custom IP address for a name, Local port number, HTTP proxy,
Historic TELNET, Enable, Converting a web form, Implicit FTPS, All options,
Prereq, Connection reuse, Custom addresses for hosts, Proxies, Post transfer info,
CURLU_DEFAULT_PORT, Set URL parts, Alt-Svc, Base64 Encoding

• –post301: Decide what method to use in redirects
• –post302: Decide what method to use in redirects
• –post303: Decide what method to use in redirects
• Progress callback: All options, timer_callback, Progress information, easy API,

Progress callback
• pronunciation: Pronunciation
• –proxy: HTTP proxy, Authentication
• proxy: How it started, Line 4: Features, Available exit codes, Available –write-

out variables, Intermediaries’ fiddlings, Discover your proxy, PAC, Proxy type,
HTTP proxy, SOCKS proxy, MITM proxy, Proxy authentication, HTTPS proxy,
Proxy environment variables, Proxy headers, haproxy, CONNECT response codes,
Authentication, Verification, All options, Proxies, Available information, Variables

• –proxy-ca-native: Native CA stores
• –proxy-http2: HTTP/2
• –proxy-user: Proxy authentication, Authentication
• –proxy1.0: HTTP proxy tunneling
• –proxytunnel: HTTP proxy tunneling

Q
• -Q: Quote
• QUIC: Establish a connection, HTTPS, QUIC and HTTP/3, Available exit codes,

Never spend more than this to connect, QUIC, Which libcurl version runs, HTTP/3,
Version 3 can be mandatory

• –quote: Quote

R
• ranges: Numerical ranges, Resuming and ranges, Ranges, Provide a file descriptor,

HTTP response code, Ranges
• –rate: Request rate limiting



R 521

• Read callback: make callbacks as fast as possible, All options, Read data, HTTP
POST

• redhat: Redhat and CentOS
• redirects: Long options, Separate options per URL, Syntax, Available exit codes,

Available –write-out variables, Download to a file named by the URL, Shell redirects,
Provide a custom IP address for a name, Captive portals, Redirects, Request method,
Redirects, All options, Custom addresses for hosts, Available information, Automatic
referrer, Submit a login form over HTTP

• RELEASE-NOTES: scripts
• releases: curl-announce, Releases, scripts, Which libcurl version
• –remote-name-all: One output for each given URL, Use the URL’s filename part for

all URLs
• –remove-on-error: Leftovers on errors
• repository: Releases, Source code on GitHub, Arch Linux, Building libcurl on MSYS2,

root, What to add, Website, Notes, Continuous Integration, Autobuilds, Content
• –resolve: Provide a custom IP address for a name
• –retry: Retry, Request rate limiting
• –retry-all-errors: Retry on any and all errors
• –retry-connrefused: Connection refused
• –retry-delay: Tweak your retries
• –retry-max-time: Tweak your retries
• RFC 1436: GOPHER
• RFC 1738: FILE, multicwd
• RFC 1939: POP3
• RFC 1945: Redirects
• RFC 2229: DICT
• RFC 2246: TLS versions
• RFC 2326: RTSP
• RFC 2595: IMAP
• RFC 2818: HTTPS
• RFC 3207: SMTP
• RFC 3501: IMAP
• RFC 3986: Browsers
• RFC 4217: FTPS
• RFC 4511: LDAP
• RFC 5321: SMTP
• RFC 7838: Alternative Services
• RFC 8314: IMAPS
• RFC 8446: TLS versions
• RFC 854: TELNET
• RFC 8999: HTTPS
• RFC 9110: HTTP
• RFC 9112: HTTP
• RFC 9113: HTTP
• RFC 9114: HTTP
• RFC 959: FTP, Quote
• roadmap: Future
• rpath: rpath
• RTMP: What protocols does curl support?, RTMP, librtmp, Supported schemes,



522 INDEX

Version
• RTSP: What protocols does curl support?, RTSP, Supported schemes, Version, All

options, RTSP interleaved data, Available information, Variables
• rustls: TLS libraries, <features>
• rustls-ffi: Select TLS backend, Rustls

S

• Safari: Copy as curl
• Schannel: TLS libraries, Native CA stores, CA cert cache, <features>
• Scheme: Connect to port numbers, FILE, Naming, librtmp, Scheme, Name and

password, TCP vs UDP, Browsers, Available exit codes, Available –write-out
variables, Proxy type, SOCKS proxy, Proxy authentication, TLS for emails,
Which libcurl version, Proxy types, Available information, Authentication,
CURLU_NON_SUPPORT_SCHEME, CURLU_DEFAULT_PORT, URLs, Get a response into
memory, Protocol handler, Curl_handler

• SCP: What protocols does curl support?, SCP, SSH libraries, Supported schemes,
Version, Available exit codes, Compression, Protocols allowing upload, SCP and
SFTP, All options, Curl_handler, <server>

• security: curl-announce, Commercial support, Security, Trust, Security, How much
do protocols change?, FTPS, docs, Reporting vulnerabilities, http_proxy in lower
case only, TLS, Ciphers, Enable TLS, TLS versions, HTTP/0.9, HSTS, Protocol
version, All options, HSTS, URLs, HSTS

• SFTP: What protocols does curl support?, SFTP, SSH libraries, Supported schemes,
Version, Available exit codes, Trace options, Compression, Protocols allowing upload,
SCP and SFTP, All options, Curl_handler, <server>, Run a range of tests

• –silent: Progress meter, Error message
• SMTP: What protocols does curl support?, SMTP, Without scheme, Version, Avail-

able exit codes, Protocols allowing upload, Enable TLS, Sending email, STARTTLS,
All options, CURLU_GUESS_SCHEME, Variables, Test servers

• SMTPS: What protocols does curl support?, SMTPS, TLS libraries, Supported
schemes, Version, Protocols allowing upload, Enable TLS

• snapshots: Daily snapshots, root
• SNI: Change the Host: header
• –socks4: SOCKS proxy
• –socks4a: SOCKS proxy
• –socks5: SOCKS proxy
• –socks5-hostname: SOCKS proxy
• –speed-limit: Stop slow transfers
• –speed-time: Stop slow transfers
• SSH: SCP, Select SSH backend, SSH libraries, Available exit codes, SCP and SFTP,

Historic TELNET, Trace everything, All options, SSH key, Different backends,
Curl_handler, Variables

• SSH backend: Select SSH backend
• SSL context callback: All options
• SSLKEYLOGFILE: TLS, SSLKEYLOGFILE, Figure out what a browser sends
• STARTTLS: IMAP, TLS for emails, STARTTLS



T 523

T
• -T: PUT, Upload, Method, HTTP PUT, Uploading with FTP
• TCP: Establish a connection, How much do protocols change?, DICT, TCP vs UDP,

Connection reuse, Available exit codes, Available –write-out variables, Connection
timeout, Local port number, Keep alive, Timeouts, HTTP proxy tunneling, MITM
proxy, haproxy, TLS, Debugging with TELNET, TFTP, QUIC, HTTPS, Two
connections, Connection cache, All options, HTTP/3, connectdata

• TELNET: What protocols does curl support?, TELNET, Supported schemes, Version,
Available exit codes, TELNET, All options, Variables

• testing: What does curl do?, Reporting bugs, Handling build options, Contributing,
Run a local clone, Separate install, About HTTP response code “errors”, Debug
builds, Test servers, Torture

• TFTP: What protocols does curl support?, TFTP, Supported schemes, TCP vs
UDP, Version, Available exit codes, Protocols allowing upload, TFTP, All options,
Variables, Test servers

• –tftp-blksize: TFTP options
• –tftp-no-options: TFTP options
• –time-cond: Check by modification date
• TLS: Security, How much do protocols change?, GOPHERS, The URL converted

to a request, Ubuntu and Debian, lib/vtls, Handling build options, Select TLS
backend, TLS libraries, TLS libraries, Connection reuse, Line 1: curl, Available exit
codes, More data, Available –write-out variables, Change the Host: header, Never
spend more than this to connect, MITM proxy, TLS, Ciphers, Enable TLS, TLS
versions, Verifying server certificates, Certificate pinning, OCSP stapling, Client
certificates, TLS auth, TLS backends, SSLKEYLOGFILE, SCP and SFTP, TLS
for emails, Caveats, HTTPS only, HTTPS, Figure out what a browser sends, TLS
fingerprinting, FTPS, Trace everything, Caches, reuse handles, TLS options, All
options, SSL context, HTTP proxy, Available information, URLs, Different backends,
connection cache, Variables

• TLS backend: Ubuntu and Debian, lib/vtls, Select TLS backend, Line 1: curl,
Available exit codes, TLS, Native CA stores, Certificate pinning, OCSP stapling,
Client certificates, TLS backends, CA cert cache, SSL context

• TODO: Future, Suggestions, Notes
• –tr-encoding: Compression, Transfer encoding
• –trace: Trace options, <command [option="no-output/no-include/force-output/binary-trace"]

[timeout="secs"][delay="secs"][type="perl/shell"]>
• –trace-ascii: Trace options, Server differences, <command [option="no-output/no-include/force-output/binary-trace"]

[timeout="secs"][delay="secs"][type="perl/shell"]>
• –trace-config: More data
• –trace-ids: Identify transfers and connections
• –trace-time: Time stamps
• transfer-encoding: Pass on transfer encoding, Chunked encoded POSTs
• trurl: trurl

U
• -U: Building libcurl on MSYS2, Proxy authentication
• -u: Building libcurl on MSYS2, Passwords, URLs, IMAP, Authentication

internals/tests/file-format.md#sect--less-than-command--option-no-output-slash-no-include-slash-force-output-slash-binary-trace---timeout-secs--delay-secs--type-perl-slash-shell--greater-than
internals/tests/file-format.md#sect--less-than-command--option-no-output-slash-no-include-slash-force-output-slash-binary-trace---timeout-secs--delay-secs--type-perl-slash-shell--greater-than
internals/tests/file-format.md#sect--less-than-command--option-no-output-slash-no-include-slash-force-output-slash-binary-trace---timeout-secs--delay-secs--type-perl-slash-shell--greater-than
internals/tests/file-format.md#sect--less-than-command--option-no-output-slash-no-include-slash-force-output-slash-binary-trace---timeout-secs--delay-secs--type-perl-slash-shell--greater-than


524 INDEX

• Ubuntu: Ubuntu and Debian
• URL Globbing: URL globbing
• URL parser: Browsers, trurl, CURLU_ALLOW_SPACE
• –url-query: Query

V
• –variable: Variables
• variables: No assignments in conditions, Output variables for globbing, Config file,

Variables, Error message, Write out, Proxy environment variables, Ciphers, Proxy
environment variables, Preprocessed

• –verbose: Long options, Time stamps
• –version: Version, TLS backends, Memory debugging
• Vulnerability: Vulnerability handling

W
• Wireshark: Available exit codes, Trace options, SSLKEYLOGFILE, Figure out what

a browser sends
• wolfSSH: SSH libraries, SCP and SFTP, <features>
• wolfSSL: Commercial support, lib/vtls, Running DLL based configurations, TLS

libraries, Native CA stores, Restrictions, All options, SSL context, <features>
• Write callback: make callbacks as fast as possible, Callback considerations, All

options, Write data, Response body, 1. The callback approach, Raw mode, Write
callback, Get a simple HTTP page, Get a response into memory

• –write-out: Error message, Write out, Overwriting, HTTP response codes

X
• -X: Request method, Request target, HTTP PUT
• -x: HTTP proxy, SOCKS proxy, Proxy authentication, Proxy environment variables,

Proxy headers, Proxy environment variables

Y
• yum: Redhat and CentOS

Z
• -Z: Parallel transfers, Parallel
• -z: Check by modification date
• zlib: HTTP Compression, About content encodings
• zstd: HTTP Compression, Which libcurl version runs, Supported content encodings


	Introduction
	Site
	Content
	Author
	Contribute
	Contributors
	License

	How to read
	1. The cURL project
	2. Network and protocols
	3. Install curl and libcurl
	4. Source code
	5. Build curl
	6. Command line concepts
	7. Command line transfers
	8. Command line HTTP
	9. Command line FTP
	10. libcurl
	11. libcurl transfers
	12. libcurl HTTP
	13. libcurl helpers
	14. libcurl examples
	15. libcurl bindings
	16. libcurl internals
	17. Index

	The cURL project
	How it started
	The name
	Pronunciation
	Confusions and mix-ups
	As a verb

	What does curl do?
	Command line tool
	The library

	Project communication
	Mailing list etiquette
	Do not mail a single individual
	Reply or new mail
	Reply to the list
	Use a sensible subject
	Do not top-post
	HTML is not for mails
	Quoting
	Digest
	Please tell us how you solved the problem

	Mailing lists
	curl-users
	curl-library
	curl-announce

	Reporting bugs
	A bug is a problem
	Problems must be known to get fixed
	Fixing the problems
	A good bug report
	Testing

	Commercial support
	Releases
	Release cycle
	Daily snapshots

	Security
	Past security problems

	Trust
	Code of Conduct
	Development
	Source code on GitHub

	The development team
	Users of curl
	Open Source
	Counting downloads
	Finding users
	Command-line tool users
	Embedded library
	In website backends
	Famous users
	Famous high volume apps using curl

	Future
	Network and protocols
	Networking simplified
	Client and server
	Which machine
	Hostname resolving
	Establish a connection
	Connect to port numbers
	Security
	Transfer data
	Disconnect

	Protocols
	What protocols does curl support?
	What other protocols are there?
	How are protocols developed?
	How much do protocols change?
	About adhering to standards and who is right

	curl protocols
	DICT
	FILE
	FTP
	FTPS
	GOPHER
	GOPHERS
	HTTP
	HTTPS
	IMAP
	IMAPS
	LDAP
	LDAPS
	MQTT
	POP3
	POP3S
	RTMP
	RTSP
	SCP
	SFTP
	SMB
	SMBS
	SMTP
	SMTPS
	TELNET
	TFTP
	WS
	WSS

	HTTP basics
	The URL converted to a request

	Install curl and libcurl
	Linux
	Ubuntu and Debian
	Redhat and CentOS
	Fedora
	Immutable Fedora distributions
	nix
	Arch Linux
	SUSE and openSUSE
	SUSE SLE Micro and openSUSE MicroOS

	Gentoo
	Void Linux

	Windows
	MSYS2
	Get curl and libcurl on MSYS2
	Building libcurl on MSYS2

	vcpkg
	Install libcurl

	macOS
	Get libcurl for macOS

	Container
	Running curl seamlessly in container
	Bash or zsh
	Fish

	Running curl in kubernetes

	Source code
	Hosting and download
	Clone the code

	Open Source
	What is Open Source

	License
	Copyright
	Independent
	Legal

	Code layout
	root
	lib
	lib/vtls
	src
	include/curl
	docs
	docs/libcurl
	docs/libcurl/opts
	docs/examples
	scripts

	Handling build options
	Code style
	Naming
	Indentation
	Comments
	Long lines
	Braces
	else on the following line
	No space before parentheses
	Use boolean conditions
	No assignments in conditions
	New block on a new line
	Space around operators
	No parentheses for return values
	Parentheses for sizeof arguments
	Column alignment
	Platform dependent code
	No typedefed structs

	Contributing
	Suggestions
	What to add
	What not to add
	git
	Pull request
	Make a patch for the mailing list
	git commit style
	Who decides what goes in?

	Reporting vulnerabilities
	Vulnerability handling
	curl-security@haxx.se

	Website
	Building the web
	Run a local clone
	Website infrastructure

	Build curl and libcurl
	The latest version?
	Releases source code
	git vs release tarballs
	On Linux and Unix-like systems
	On Windows
	Learn more

	Autotools
	Cross-compiling
	Static linking
	Select TLS backend
	Select SSH backend
	Select HTTP/3 backend

	CMake
	Separate install
	Static linking
	Dynamic linking
	Temporary installs
	LD_LIBRARY_PATH
	rpath


	Windows
	winbuild
	Visual C++ project files
	Running DLL based configurations
	Notes

	Dependencies
	HTTP Compression
	c-ares
	nghttp2
	openldap
	librtmp
	libpsl
	libidn2
	SSH libraries
	TLS libraries
	QUIC and HTTP/3

	TLS libraries
	configure
	OpenSSL, BoringSSL, libressl
	GnuTLS
	WolfSSL
	mbedTLS
	Secure Transport
	Schannel
	BearSSL
	Rustls


	BoringSSL
	build boringssl
	set up the build tree to get detected by curl's configure
	configure curl
	build curl

	Command line concepts
	Garbage in gives garbage out

	Differences
	Binaries and different platforms
	Command lines, quotes and aliases

	Command line options
	Short options
	Long options
	Arguments to options
	Arguments with spaces
	Negative options

	Options depend on version
	URLs
	Scheme
	The scheme separator
	Without scheme
	Supported schemes

	Name and password
	Host
	International Domain Names (IDN)

	Port number
	TCP vs UDP

	Path
	Query
	FTP type
	Fragment
	A fragment trick

	Browsers
	Browsers' address bar

	Many options and URLs
	One output for each given URL
	Separate options per URL

	Connection reuse
	Parallel transfers
	Parallel transfer progress meter
	Connection before multiplex

	trurl
	Usage
	trurl example command lines
	More

	URL globbing
	Numerical ranges
	Alphabetical ranges
	List
	Combinations
	Output variables for globbing
	Using []{} in URLs

	List options
	Config file
	Specify the config file to use
	Syntax
	Command line options
	Arguments
	URLs
	When to use quotes
	Default config file

	Variables
	Setting variables
	Assigning contents from file
	Expand
	Environment variables
	Expand --variable
	Functions
	Function: trim
	Function: json
	Function: url
	Function: b64

	Passwords
	Command line leakage
	Network leakage

	Progress meter
	Units
	Progress meter legend

	Version
	Line 1: curl
	Line 1: TLS versions

	Line 2: Release-Date
	Line 3: Protocols
	Line 4: Features

	Persistent connections
	Exit code
	Available exit codes
	Error message
	``Not used''

	Copy as curl
	From Firefox
	From Chrome and Edge
	From Safari
	On Firefox, without using the devtools
	Not perfect

	Command line transfers
	Verbose
	HTTP/2 and HTTP/3
	Silence

	Trace options
	Time stamps
	Identify transfers and connections
	More data

	Write out
	Variables
	HTTP headers
	Output
	Windows
	Available –write-out variables

	Downloads
	What exactly is downloading?
	Storing downloads
	Overwriting
	Leftovers on errors

	Download to a file named by the URL
	Use the URL's filename part for all URLs

	Use the target filename from the server
	HTML and charsets
	Compression
	HTTP headers
	Uploads

	Shell redirects
	Multiple downloads
	Parallel

	My browser shows something else
	Client differences
	Server differences
	Intermediaries' fiddlings

	Maximum filesize
	Storing metadata in file system
	Raw
	Retry
	Tweak your retries
	Connection refused
	Retry on any and all errors

	Resuming and ranges
	Uploads
	Protocols allowing upload
	HTTP offers several uploads
	POST
	multipart formpost
	PUT

	FTP uploads
	SMTP uploads
	Progress meter for uploads

	Transfer controls
	Stop slow transfers
	Rate limiting
	Request rate limiting
	Connections
	Name resolve tricks
	Edit the hosts file
	Change the Host: header
	Provide a custom IP address for a name
	Provide a replacement name
	Name resolve tricks with c-ares

	Connection timeout
	Network interface
	Local port number
	Keep alive
	Timeouts
	Maximum time allowed to spend
	Never spend more than this to connect

	.netrc
	The .netrc file format
	User name matching
	Enable netrc

	Proxies
	Discover your proxy
	PAC
	Captive portals
	Proxy type
	HTTP proxy
	HTTPS with HTTP proxy
	Non-HTTP protocols over an HTTP proxy
	HTTP proxy tunneling

	SOCKS proxy
	MITM proxy
	Proxy authentication
	HTTPS proxy
	HTTP/2

	Proxy environment variables
	No proxy
	http_proxy in lower case only

	Proxy headers
	haproxy
	curl and haproxy

	TLS
	Ciphers
	Enable TLS
	TLS versions
	Verifying server certificates
	Native CA stores
	CA store in file(s)
	CA store on windows

	Certificate pinning
	OCSP stapling
	Client certificates
	TLS auth
	TLS backends
	Multiple TLS backends

	SSLKEYLOGFILE
	libcurl-using applications too
	Restrictions

	SCP and SFTP
	URLs
	Authentication
	Known hosts

	Reading email
	POP3
	IMAP
	TLS for emails

	Sending email
	Secure mail transfer
	The SMTP URL
	No MX lookup!

	DICT
	Usage

	IPFS
	Gateway

	MQTT
	What does curl deliver as a response to a subscribe
	Caveats

	TELNET
	Historic TELNET
	Debugging with TELNET
	Options

	TFTP
	Download
	Upload
	TFTP options

	Command line HTTP
	Method
	Responses
	Size of an HTTP response
	HTTP response codes
	CONNECT response codes
	Chunked transfer encoding
	Gzipped transfers
	Transfer encoding
	Pass on transfer encoding

	Authentication
	Ranges
	HTTP versions
	HTTP/0.9
	HTTP/2
	Multiplexing

	HTTP/3
	QUIC
	HTTPS only
	Enable
	Multiplexing
	Alt-svc:
	When QUIC is denied

	Conditionals
	Check by modification date
	Check by modification of content

	HTTPS
	HTTP POST
	Simple POST
	Content-Type
	Posting binary
	JSON
	Crafting JSON to send
	Receiving JSON

	URL encode data
	Convert to GET
	Expect 100-continue
	HTTP/2 and later

	Chunked encoded POSTs
	Caveats

	Hidden form fields
	Figure out what a browser sends
	JavaScript and forms
	Multipart formposts
	Sending such a form with curl
	The HTTP this generates
	Content-Type
	Converting a web form
	From <form> to -F
	text input
	file input
	hidden input
	All fields at once


	-d vs -F
	HTML web forms
	POST outside of HTML

	Redirects
	Permanent and temporary
	Tell curl to follow redirects
	GET or POST?
	Decide what method to use in redirects

	Redirecting to other host names

	Non-HTTP redirects
	HTML redirects
	JavaScript redirects

	Modify the HTTP request
	Request method
	Request target
	–path-as-is

	Fragment
	Customize headers
	Referer
	User-agent
	HTTP PUT
	Cookies
	Cookie engine
	Reading cookies from file
	Writing cookies to file
	New cookie session

	Cookie file format
	File format
	Fields in the file

	Alternative Services
	Enable
	The alt-svc cache
	HTTPS only
	HTTP/3

	HSTS
	HSTS cache
	Use HSTS to update insecure protocols

	Scripting browser-like tasks
	Figure out what the browser does
	Cookies
	Web logins and sessions
	Redirects
	Post-login
	Referer
	TLS fingerprinting

	Command line FTP
	Ping-pong
	Transfer mode
	Authentication

	FTP Directory listing
	Uploading with FTP
	Custom FTP commands
	Quote
	A series of commands
	Fallible commands

	Two connections
	Active connections
	Passive connections
	Firewall issues

	Directory traversing
	multicwd
	nocwd
	singlecwd

	FTPS
	Implicit FTPS
	Explicit FTPS
	Common FTPS problems

	libcurl
	C API
	Transfer oriented
	Simple by default, more on demand

	Header files
	Global initialization
	API compatibility
	Version numbers
	Bumping numbers
	Which libcurl version
	Which libcurl version runs

	–libcurl
	multi-threading
	CURLcode return codes
	Verbose operations
	Trace everything
	Transfer and connection identifiers
	Trace more

	Caches
	DNS cache
	Connection cache
	TLS session cache
	CA cert cache

	Performance
	reuse handles
	buffer sizes
	pool size
	make callbacks as fast as possible
	share data
	threads
	curl_multi_socket_action

	for C++ programmers
	Strings are C strings, not C++ string objects
	Callback considerations

	libcurl transfers
	Easy handle
	Reuse
	Reset
	Duplicate

	curl easy options
	Get options

	Set numerical options
	Set string options
	CURLOPT_POSTFIELDS
	Why?

	C++

	TLS options
	Protocol version
	Protocol details and behavior
	Verification
	Authentication
	TLS Client certificates
	TLS auth

	STARTTLS

	All options
	Get option information
	Iterate over all options
	Find a specific option by name
	Find a specific option by ID
	The curl_easyoption struct

	Drive transfers
	Drive with easy
	Drive with multi
	When is a single transfer done?

	Drive with multi_socket
	Pick one
	Many easy handles
	multi_socket callbacks
	socket_callback
	timer_callback
	How to start everything
	When is it done?


	Callbacks
	Write data
	Store in memory

	Read data
	Progress information
	Header data
	Debug
	sockopt
	SSL context
	Seek and ioctl
	Network data conversion
	Convert to and from network callbacks
	Convert from UTF-8 callback

	Opensocket and closesocket
	Provide a file descriptor
	Socket close callback

	SSH key
	RTSP interleaved data
	FTP wildcard matching
	Wildcard patterns
	FTP chunk callbacks
	FTP matching callback

	Resolver start
	Sending trailers
	HSTS
	Prereq
	Connection control
	How libcurl connects
	Happy Eyeballs
	Timeout and halving
	HTTP/3

	Connection reuse
	Easy API pool
	Multi API pool
	Sharing the connection cache

	Name resolving
	Name resolver backends
	DNS over HTTPS

	Caching
	Custom addresses for hosts
	Name server options
	No global DNS cache

	Proxies
	Proxy types
	Local or proxy name lookup
	Which proxy?
	Proxy environment variables

	HTTP proxy
	HTTPS proxy
	Proxy authentication
	HTTP Proxy headers

	Transfer control
	Stop
	easy API
	multi API

	Stop slow transfers
	Rate limit
	Progress meter
	Progress callback
	Cleanup
	Multi API
	easy handle

	Post transfer info
	Available information

	libcurl HTTP
	HTTPS
	HTTP proxy
	Sections

	Responses
	Response body
	Response meta-data
	HTTP response code
	About HTTP response code ``errors''

	Requests
	Request method
	Customize HTTP request headers
	Add a header
	Change a header
	Remove a header
	Provide a header without contents

	Referrer
	Automatic referrer


	Versions
	Version 2 not mandatory
	Version 3 can be mandatory

	Ranges
	Authentication
	User name and password
	Authentication required
	Basic
	Digest
	NTLM
	Negotiate
	Bearer
	Try-first

	Cookies
	Cookie engine
	Enable cookie engine with reading
	Enable cookie engine with writing

	Setting custom cookies
	Import export
	Add a cookie to the cookie store
	Get all cookies from the cookie store
	Cookie store commands

	Cookie file format

	Download
	Download headers too

	Upload
	HTTP POST
	HTTP multipart formposts
	HTTP PUT
	Expect: headers
	Uploads also downloads

	Multiplexing
	HSTS
	In-memory cache
	Enable HSTS for a handle
	Set a HSTS cache file

	alt-svc
	Enable
	The alt-svc cache
	HTTPS only
	HTTP/3

	libcurl helpers
	Share data between handles
	Multi handle
	Sharing between easy handles
	What to share
	Locking
	Unshare

	URL API
	Include files
	Create, cleanup, duplicate
	Parse a URL
	CURLU_NON_SUPPORT_SCHEME
	CURLU_URLENCODE
	CURLU_DEFAULT_SCHEME
	CURLU_GUESS_SCHEME
	CURLU_NO_AUTHORITY
	CURLU_PATH_AS_IS
	CURLU_ALLOW_SPACE

	Redirect to URL
	Get a URL
	Flags
	CURLU_DEFAULT_PORT
	CURLU_DEFAULT_SCHEME
	CURLU_NO_DEFAULT_PORT
	CURLU_URLENCODE
	CURLU_URLDECODE
	CURLU_PUNYCODE

	Get URL parts
	URL parts
	Zone ID

	Set URL parts
	Update parts

	Append to the query
	CURLOPT_CURLU
	WebSocket
	Support
	URLs
	Concept
	1. The callback approach
	2. The connect-only approach
	Upgrade or die
	Automatic PONG

	Options
	Raw mode

	Read
	Write callback
	curl_ws_recv

	Meta
	age
	flags
	CURLWS_TEXT
	CURLWS_BINARY
	CURLWS_FINAL
	CURLWS_CLOSE
	CURLWS_PING

	offset
	bytesleft

	Write
	curl_ws_send()
	Full fragment vs partial
	Flags
	CURLWS_TEXT
	CURLWS_BINARY
	CURLWS_CONT
	CURLWS_CLOSE
	CURLWS_PING
	CURLWS_PONG
	CURLWS_OFFSET


	Headers API
	Header origins
	Request number
	Header folding
	When

	Header struct
	The struct

	Get a header
	Iterate over headers
	libcurl examples
	Get a simple HTTP page
	Get a response into memory
	Submit a login form over HTTP
	Get an FTP directory listing
	Non-blocking HTTP form-post
	libcurl bindings
	libcurl internals
	Easy handles and connections
	Everything is multi
	State machines
	mstate

	Protocol handler
	Setup connection
	Connect
	Do
	Done
	Disconnect

	Backends
	Different backends
	Backends visualized

	Caches and state
	DNS cache
	connection cache
	TLS session-ID cache
	CA store cache
	HSTS
	Alt-Svc
	Cookies

	Timeouts
	Exposes just a single timeout to apps
	Set a timeout
	Expired timeouts

	Windows vs Unix
	Different function names for socket operations
	Init calls
	File descriptors
	Stdout
	Ifdefs

	Memory debugging
	Track Down Memory Leaks
	Single-threaded
	Build
	Modify Your Application
	Run Your Application
	Analyze the Flow


	Content Encoding
	About content encodings
	Supported content encodings
	The libcurl interface
	The curl interface

	Structs
	Curl_easy
	connectdata
	Curl_multi
	Curl_handler
	conncache
	Curl_share
	CookieInfo

	Resolving host names
	CURLRES_IPV6
	CURLRES_ARES
	CURLRES_THREADED
	host*.c sources

	Tests
	Test file format
	keywords
	Preprocessed
	Base64 Encoding
	Hexadecimal decoding
	Repeat content
	Conditional lines
	Variables

	Tags
	<info>
	<keywords>

	<reply>
	<data [nocheck="yes"] [sendzero="yes"] [base64="yes"] [hex="yes"] [nonewline="yes"]>
	<dataNUMBER>
	<connect>
	<socks>
	<datacheck [mode="text"] [nonewline="yes"]>
	<datacheckNUM [nonewline="yes"] [mode="text"]>
	<size>
	<mdtm>
	<postcmd>
	<servercmd>

	<client>
	<server>
	<features>
	<killserver>
	<precheck>
	<postcheck>
	<tool>
	<name>
	<setenv>
	<command [option="no-output/no-include/force-output/binary-trace"] [timeout="secs"][delay="secs"][type="perl/shell"]>
	<file name="log/filename" [nonewline="yes"]>
	<stdin [nonewline="yes"]>

	<verify>
	<errorcode>
	<strip>
	<strippart>
	<protocol [nonewline="yes"]>
	<proxy [nonewline="yes"]>
	<stderr [mode="text"] [nonewline="yes"]>
	<stdout [mode="text"] [nonewline="yes"]>
	<file name="log/filename" [mode="text"]>
	<file1>
	<file2>
	<file3>
	<file4>
	<stripfile>
	<stripfile1>
	<stripfile2>
	<stripfile3>
	<stripfile4>
	<upload>
	<valgrind>


	Build tests
	Run tests
	Run a range of tests
	Run a specific test with gdb
	Run a specific test without valgrind

	Debug builds
	Memdebug

	Test servers
	curl tests
	libcurl tests
	Unit tests
	Valgrind
	Continuous Integration
	Failing builds

	Autobuilds
	Check status
	Legacy

	Torture
	Rerun a specific failure
	Shallow

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z


